Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Review on the progress of ultra-precision machining technologies

  • Review Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan Z, Wang X. The Technology of Precision Machining and Ultra-Precision Machining. 3rd ed. Beijing: China Machine Press, 2016 (in Chinese)

    Google Scholar 

  2. Editing Committee of Microfabrication Technology. Microfabrication Technology. Beijing: Science Press, 1983 (in Chinese)

    Google Scholar 

  3. Komanduri R, Lucca D A, Tani Y. Technological advances in fine abrasive processes. CIRP Annals—Manufacturing Technology, 1997, 46(2): 545–596

    Article  Google Scholar 

  4. Ikawa N, Shimada S. Accuracy problems in ultra-precision metal cutting. Journal of the Japan Society of Precision Engineering, 1986, 52(12): 2000–2004 (in Japanese)

    Article  Google Scholar 

  5. Shimada S, Ikawa N, Tanaka H, et al. Feasibility study on ultimate accuracy in micro-cutting using molecular dynamics simulations. CIRP Annals—Manufacturing Technology, 1993, 42(1): 91–94

    Article  Google Scholar 

  6. Byrne G, Dornfeld D, Denkena B. Advancing cutting technology. CIRP Annals—Manufacturing Technology, 2003, 52(2): 483–507

    Article  Google Scholar 

  7. Edward P, David S, Scott C. MOLDED OPTICS: Molded glass aspheric optics hit the target for precision and cost. Laser Focus World, 2007, 43(12): 71–74

    Google Scholar 

  8. Kim H S, Lee K I, Lee K M, et al. Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with onmachine measurement. International Journal of Machine Tools and Manufacture, 2009, 49(12–13): 991–997

    Article  Google Scholar 

  9. Rakuff S, Cuttino J F. Design and testing of a long-range, precision fast tool servo system for diamond turning. Precision Engineering, 2009, 33(1): 18–25

    Article  Google Scholar 

  10. Tohme Y E, Lowe J A. Machining of freeform optical surfaces by slow slide servo method. In: Proceedings of the American Society for Precision Engineering Annual Meeting. 2003

    Google Scholar 

  11. Wei H. Ultra-precision machining & manufacturing of optical devices [EB/OL]. 2011. Retrieved from http://www.vogel.com.cn/ top/mm15/news_t_view.html?id = 188500 (in Chinese)

    Google Scholar 

  12. Weck M, Klocke F. Manufacturing and applications of nonrotationally symmetric optics. SPIE Proceedings, Optical Fabrication and Testing, 1999, 3739: 94–107

    Article  Google Scholar 

  13. Gao W. Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder. Precision Engineering, 2003, 27(3): 289–298

    Article  Google Scholar 

  14. Ohmori H, Nakagawa T. Mirror surface grinding of silicon wafers with electrolytic in-process dressing. CIRP Annals—Manufacturing Technology, 1990, 39(1): 329–332

    Article  Google Scholar 

  15. Matsumura T, Hiramatsu T, Shirakashi T, et al. A study on cutting force in the milling process of glass. Journal of Manufacturing Processes, 2005, 7(2): 102–108

    Article  Google Scholar 

  16. Matsumura T, Ono T. Cutting process of glass with inclined ball end mill. Journal of Materials Processing Technology, 2008, 200(1–3): 356–363

    Article  Google Scholar 

  17. Ono T, Matsumura T. Influence of tool inclination on brittle fracture in glass cutting with ball end mills. Journal of Materials Processing Technology, 2008, 202(1–3): 61–69

    Article  Google Scholar 

  18. Foy K, Wei Z, Matsumura T, et al. Effect of tilt angle on cutting regime transition in glass micromilling. International Journal of Machine Tools and Manufacture, 2009, 49(3–4): 315–324

    Article  Google Scholar 

  19. Suzuki H, Moriwaki T, Yamamoto Y, et al. Precision cutting of aspherical ceramic molds with micro PCD milling tool. CIRP Annals—Manufacturing Technology, 2007, 56(1): 131–134

    Article  Google Scholar 

  20. Scheiding S, Eberhardt R, Gebhardt A, et al. Micro lens array milling on large wafers. Optik & Photonik, 2009, 4(4): 41–45

    Article  Google Scholar 

  21. Malkin S, Guo C. Grinding Technology. 2nd ed. South Norwalk: Industrial Press Inc., 2007

    Google Scholar 

  22. Su H, Xu H, Fu Y. Reviewthe current questions and strategies about multilayer sintering super abrasive tools and conceive the development of future tools. Chinese Journal of Mechanical Engineering, 2005, 42(3): 12–17

    Article  Google Scholar 

  23. Webster J, Tricard M. Innovations in abrasive products for precision grinding. CIRP Annals—Manufacturing Technology, 2004, 53(2): 597–617

    Article  Google Scholar 

  24. Tannaka T. New development of metal bonded diamond wheel with pore by the growth of bonding bridge. International Journal of the Japan Society for Precision Engineering, 1992, 26(1): 27–32

    Google Scholar 

  25. Chattopadhya A K, Chollet L, Hintermann H E. Induction brazing of diamond with diamond Ni-Cr hadfacing alloy under argon atmosphere. Surface and Coatings Technology, 1991, 45(1–3): 293–298

    Article  Google Scholar 

  26. Ikeno J, Tani Y, Sato H. Nanometer grinding using ultrafine abrasive pellets—Manufacture of pellets applying electrophoretic deposition. CIRP Annals—Manufacturing Technology, 1990, 39(1): 341–344

    Article  Google Scholar 

  27. Ohmori H, Nakagawa T. Mirror surface grinding of silicon wafers with electrolytic in-process dressing. CIRP Annals—Manufacturing Technology, 1990, 39(1): 329–332

    Article  Google Scholar 

  28. Kramer D, Rehsteiner F, Schumacher B. ECD (electrochemical inprocess controlled dressing), a new method for grinding of modern high-performance cutting materials to highest quality. CIRP Annals—Manufacturing Technology, 1999, 48(1): 265–268

    Article  Google Scholar 

  29. Wang Y, Zhou X, Hu D. An experimental investigation of dryelectrical discharge assisted truing and dressing of metal bonded diamond wheel. International Journal of Machine Tools and Manufacture, 2006, 46(3–4): 333–342

    Article  Google Scholar 

  30. Suzuki K, Uematsu T, Yanase T, et al. Development of a simplified electrochemical dressing method with twin electrodes. CIRP Annals—Manufacturing Technology, 1991, 40(1): 363–366

    Article  Google Scholar 

  31. Bhattacharyya B, Doloi B N, Sorkhel S K. Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. Journal of Materials Processing Technology, 1999, 95(1–3): 145–154

    Article  Google Scholar 

  32. Zhang C, Shin Y C. A novel laser-assisted truing and dressing technique for vitrified CBN wheels. International Journal of Machine Tools and Manufacture, 2002, 42(7): 825–835

    Article  Google Scholar 

  33. Hirao M, Izawa M. Water-jet in-process dressing (1st report): Dressing property and jet pressure. Journal of the Japan Society of Precision Engineering, 1998, 64(9): 1335–1339 (in Japanese)

    Article  Google Scholar 

  34. Ikuse Y, Nonokawa T, Kawabatan N, et al. Development of new ultrasonic dressing equipment. Journal of the Japan Society of Precision Engineering, 1995, 61(7): 986–990 (in Japanese)

    Article  Google Scholar 

  35. Ohmori H, Nakagawa T. Analysis of mirror surface generation of hard and brittle materials by ELID (electrolytic in-process dressing) grinding with superfine grain metallic bond wheels. CIRP Annals —Manufacturing Technology, 1995, 44(1): 287–290

    Article  Google Scholar 

  36. Lambropoulos J C, Gillman B E, Zhou Y, et al. Glass-ceramics: Deterministic microgrinding, lapping and polishing. SPIE Proceedings, Optical Manufacturing and Testing II, 1997, 3134: 178–189

    Article  Google Scholar 

  37. Jeff R, Ed F, Dennis V G, et al. Contour grinding results on the NanotechTM 150AG. Convergence, 1999, 7(3): 1–8

    Google Scholar 

  38. Zhou L, Eda H, Shimizu J, et al. Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding. CIRP Annals—Manufacturing Technology, 2006, 55(1): 313–316

    Article  Google Scholar 

  39. Hang W, Zhou L, Zhang K, et al. Study on grinding of LiTaO3 wafer using effective cooling and electrolyte solution. Precision Engineering, 2016, 44: 62–69

    Article  Google Scholar 

  40. Kasai T, Doy T. Grinding, lapping and polishing technologies under nanometer scale working conditions. Journal of the Japan Society of Precision Engineering, 1993, 59(4): 559–562 (in Japanese)

    Article  Google Scholar 

  41. Wang J, Wang T, Pan G, et al. Effect of photocatalytic oxidation technology on GaN CMP. Applied Surface Science, 2016, 361: 18–24

    Article  Google Scholar 

  42. Yuan J. Ultraprecision Machining of Functional Ceramics. Harbin: Press of Harbin Institute of Technology, 2000 (in Chinese)

    Google Scholar 

  43. Mori Y, Ikawa N, Okuda T, et al. Numerically controlled elastic emission machine. Journal of the Japan Society of Precision Engineering, 1980, 46(12): 1537–1544

    Article  Google Scholar 

  44. Uzawa S. Canon’s development status of EUVL technologies. In: Proceedings of the 4th EUVL Symposium. 2005

    Google Scholar 

  45. Watanabe J, Suzuki J, Kobayashi A. High precision polishing of semiconductor materials using hydrodynamic principle. CIRP Annals—Manufacturing Technology, 1981, 30(1): 91–95

    Article  Google Scholar 

  46. Namba Y, Tsuwa H. Ultra-fine finishing of sapphire single crystal. CIRP Annals—Manufacturing Technology, 1977, 26(1): 325–329

    Google Scholar 

  47. Yasunaga N, Obara A, Tarumi N. Study of mechanochemical effect on wear and its application to surface finishing. Journal of the Japan Society for Precision Engineering, 1977, 776: 50–134

    Google Scholar 

  48. Steigerwald J M, Murarka S P, Gutmann R J. Chemical Mechanical Planarization of Microelectronic Materials. New York: John Wiley & Sons Inc., 1996

    Google Scholar 

  49. Pirayesh H, Cadien K. Chemical mechanical polishing in the dry lubrication regime: Application to conductive polysilicon. Journal of Materials Processing Technology, 2015, 220: 257–263

    Article  Google Scholar 

  50. Fox M, Agrawal K, Shinmura T, et al. Magnetic abrasive finishing of rollers. CIRP Annals—Manufacturing Technology, 1994, 43(1): 181–184

    Article  Google Scholar 

  51. Tani Y, Kawata K, Nakayama K. Development of high-efficient fine finishing process using magnetic fluid. CIRP Annals—Manufacturing Technology, 1984, 33(1): 217–220

    Article  Google Scholar 

  52. Suzuki K, Ide A, Uematsu T, et al. Electrophoresis-polishing with a partial electrode tool. In: Proceedings of the International Symposium on Advances in Abrasive Technology. 1997, 48–52

    Chapter  Google Scholar 

  53. Martin H M, Allen R G, Burge J H F, et al. Fabrication of mirrors for the Magellan telescopes and large binocular telescope. SPIE Proceedings, Large Ground-based Telescopes, 2003, 4837: 1–10

    Article  Google Scholar 

  54. Kim D W, Burge J H. Rigid conformal polishing tool using nonlinear visco-elastic effect. Optics Express, 2010, 18(3): 2242–2257

    Article  Google Scholar 

  55. Walker D D, Brooks D, King A, et al. The “precessions” tooling for polishing and figuring flat, spherical and aspheric surfaces. Optical Express, 2003, 11(8): 958–964

    Article  Google Scholar 

  56. Walker D D, Beaucamp A T H, Binghama R G, et al. Precessions aspheric polishing: New results from the development program. SPIE Proceedings, Optical Manufacturing and Testing V, 2003, 5180: 15–28

    Article  Google Scholar 

  57. Jacobs S, Arrasmith S, Kozhinova I. An overview of magnetorheological finishing (MRF) for precision optics manufacturing. Ceramic Transactions, 1999, 102: 185–199

    Google Scholar 

  58. Booij S M. Fluid jet polishing—Possibilities and limitations of a new fabrication technique. Dissertation for the Doctoral Degree. Delft: Delft University of Technology, 2003

    Google Scholar 

  59. Beaucamp A, Freeman R, Morton R, et al. Removal of diamondturning signatures on x-ray mandrels and metal optics by fluid-jet polishing. SPIE Proceedings, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, 2008, 7018: 701835

    Article  Google Scholar 

  60. Shorey A, Kordonski W, Tricard M. Deterministic precision finishing of domes and conformal optics. SPIE Proceedings, Window and Dome Technologies and Materials IX, 2005, 5786: 310–318

    Article  Google Scholar 

  61. Tricard M, Kordonski W I, Shorey A B, et al. Magnetorheological jet finishing of conformal, freeform and steep concave optics. CIRP Annals—Manufacturing Technology, 2006, 55(1): 309–312

    Article  Google Scholar 

  62. Cheng Y, Fang F, Zhang X. Ultra-precision turning of aspheric mirrors using error-decreasing amendment method. Optical Technique, 2010, 36(1): 51–55 (in Chinese)

    Google Scholar 

  63. Fang F, Liu X, Lee L. Micro-machining of optical glasses—A review of diamond-cutting glasses. Sadhana, 2003, 28(5): 945–955

    Article  Google Scholar 

  64. Guan C, Tie G, Yin Z. Fabrication of array lens optical component by using of slow tool servo diamond turning. Journal of National University of Defense Technology, 2009, 31(4): 31–47 (in Chinese)

    Google Scholar 

  65. Li L, Yi A Y, Huang C, et al. Fabrication of diffractive optics by use of slow tool servo diamond turning process. Optical Engineering, 2006, 45(11): 113401

    Article  Google Scholar 

  66. Lee W B, Cheung C F, To S, et al. Integrated manufacturing technology for design, machining and measurement of freeform optics. Journal of Mechanical Engineering, 2010, 46(11): 137–148

    Article  Google Scholar 

  67. Zhou P, Xu S, Wang Z, et al. A load identification method for the grinding damage induced stress (GDIS) distribution in silicon wafers. International Journal of Machine Tools and Manufacture, 2016, 107(8): 1–7

    Article  Google Scholar 

  68. Huang Y, Huang Z. Modern Abrasive Belt Grinding Technology and Engineering Application. Chongqing: Chongqing University Press, 2009 (in Chinese)

    Google Scholar 

  69. Zhang F. Fabrication and testing of precise off-axis convex aspheric mirror. Optics and Precision Engineering, 2010, 18(12): 2557–2563

    Google Scholar 

  70. Dai Y, Shang W, Zhou X. Effect of the material of a small tool to removal function in computer control optical polishing. Journal of National University of Defense Technology, 2006, 28(2): 97–101 (in Chinese)

    Google Scholar 

  71. Shun X, Zhang F, Dong S. Research on remove model and algorithm of resident time for magnetorheological finishing. New Technology & New Process, 2006, (2): 73–75 (in Chinese)

    Google Scholar 

  72. Liao W, Dai Y, Zhou L, et al. Optical surface roughness in ion beam process. Journal of Applied Optics, 2010, 31(6): 1041–1045 (in Chinese)

    Google Scholar 

  73. Guo P, Fang H, Yu J. Research on material removal mechanism of fluid jet polishing. Laser Journal, 2008, 29(1): 25–27 (in Chinese)

    Google Scholar 

  74. Zhang X, Dai Y, Li S. Study on magnetorheological jet polishing technology. Machinery Design & Manufacture, 2007, (12): 114–116 (in Chinese)

    Google Scholar 

  75. Zhang J, Wang B, Dong S. Application of atmospheric pressure plasma polishing method in machining of silicon ultra smooth surface. Optics and Precision Engineering, 2007, 15(11): 1749–1755 (in Chinese)

    Google Scholar 

  76. Zhang Y, Feng Z, Wang Y. Study of magnetorheological brush finishing (MRBF) for concave surface of conformal optics. In: Proceedings of the 8th China-Japan International Conference on Ultra-Precision Machining. Hangzhou, 2011

    Google Scholar 

  77. Hong T. Research on the machining mechanics of EMR effect-based tiny-grinding wheel. Dissertation for the Doctoral Degree. Guangzhou: Guangdong University of Technology, 2008

    Google Scholar 

  78. Li M, Lyu B H, Yuan J, et al. Shear-thickening polishing method. International Journal of Machine Tools and Manufacture, 2015, 94: 88–99

    Article  Google Scholar 

  79. Zhao T, Deng Q, Yuan J, et al. An experimental investigation of flat polishing with dielectrophoretic (DEP) effect of slurry. International Journal of Advanced Manufacturing Technology, 2016, 84(5–8): 1737–1746

    Google Scholar 

  80. Yuan J, Wang Z, Hong T, et al. A semi-fixed abrasive machining technique. Journal of Micromechanics and Microengineering, 2009, 19(5): 054006

    Article  Google Scholar 

  81. Qi J, Luo J, Wang K, et al. Mechanical and tribological properties of diamond-like carbon films deposited by electron cyclotron resonance microwave plasma chemical vapor deposition. Tribology Letters, 2003, 14(2): 105–109

    Article  Google Scholar 

  82. Su J, Guo D, Kang R, et al. Modeling and analyzing on nonuniformity of material removal in chemical mechanical polishing of silicon wafer. Materials Science Forum, 2004, 471–472: 26–31

    Article  Google Scholar 

  83. Yuan J, Chen L, Zhao P, et al. Study on sphere shaping mechanism of ceramic ball for lapping process. Key Engineering Materials, 2004, 259–260: 195–200

    Article  Google Scholar 

  84. Zhou F, Yuan J, Lyu B H, et al. Kinematics and trajectory in processing precision balls with eccentric plate and variable-radius V-groove. International Journal of Advanced Manufacturing Technology, 2016, 84(9–12): 2167–2178

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51375455, 51575492, 51605440, and U1401247) and the Natural Science Foundation of Zhejiang Province (Grant Nos. LY15E050022, LR17E050002, LY17E050022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Lyu, B., Hang, W. et al. Review on the progress of ultra-precision machining technologies. Front. Mech. Eng. 12, 158–180 (2017). https://doi.org/10.1007/s11465-017-0455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-017-0455-9

Keywords