Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High Efficiency Tunable Graphene-Based Plasmonic Filter in the THz Frequency Range

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A tunable plasmonic filter waveguide with indium antimonide activated by graphene layer configuration is proposed and numerically investigated. We demonstrate that the proposed tunable single-stub plasmonic filter using a thin layer of graphene can operate in the terahertz (THz) region as a notch filter. To investigate the transmission response of the structure, finite element method (FEM) calculations are utilized. The designed filter has precise minimum of zero at the notch frequency and also it improves the maximum transmitting light. Moreover, by applying the gate voltage between the graphene sheet and the InSb substrate, it can be seen that the central frequency of the filter is shifted by 32 GHz, and also the maximum of the transmission has been improved by 64% from 0.56 to 0.92 which shows less power loss. Furthermore, a band-stop plasmonic filter is proposed by increasing the number of stubs, which improves the bandwidth of the filter by 33% in compare to a single-stub structure. With such advantages, this structure is promising for future integrated plasmonic devices for applications such as communications, signal filtering, and switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halir R, Bock PJ, Cheben P, Ortega-Moux A, Alonso-Ramos C, Schmid JH, Lapointe J, Xu D-X, Wangemert-Prez JG, Molina-Fernndez I, Janz S (2014) Waveguide sub-wavelength structures: a review of principles and applications. Laser Photon, Rev 9:25–49

    Article  CAS  Google Scholar 

  2. Sacher WD, Huang Y, Lo GQ, Poon JK (2015) Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J Light Technol 33:901–10

    Article  CAS  Google Scholar 

  3. Liu H, Ren G, Gao Y, Lian Y, Qi Y, Jian S (2015) Tunable subwavelength terahertz plasmon-induced transparency in the InSb slot waveguide side-coupled with two stub resonators. Appl Opt 54(13):3918–3924

    Article  CAS  Google Scholar 

  4. Soma M, et al. (2015) Optimum waveguide-core size for reducing device property distribution of Si-wire waveguide devices. Jap J Appl Phys 5(54):04DG03

    Article  CAS  Google Scholar 

  5. Kim JT, Choi S-Y (2011) Graphene-based plasmonic waveguides for photonic integrated circuits. Opt Express 19(24):24557–24562

    Article  CAS  PubMed  Google Scholar 

  6. Fang X-Y, Yu X-X, Zheng H-M, Jin H-B, Wang L, Cao M-S (2015) Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys Lett A 379 (37):2245–2251

    Article  CAS  Google Scholar 

  7. Lao J, Tao J, Wang QJ, Huang XG (2014) Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators. Laser Photonics Rev 8(4):569–574

    Article  CAS  Google Scholar 

  8. Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, Javier Garcia de Abajo F (2012) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440

    Article  CAS  PubMed  Google Scholar 

  9. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694

    Article  CAS  PubMed  Google Scholar 

  10. Kim J, Son H, Cho DJ, Geng B, Regan W, Shi S, Kim K, Zettl A, Shen Y-R, Wang F (2012) Electrical control of optical plasmon resonance with graphene. Nano Lett 12(11):5598–5602

    Article  CAS  PubMed  Google Scholar 

  11. Emani NK, Chung T-F, Ni X, Kildishev AV, Chen Yong P, Boltasseva A (2012) Electrically tunable damping of plasmonic resonances with graphene. Nano Lett 12(10):5202–5206

    Article  CAS  PubMed  Google Scholar 

  12. Rana F (2008) Graphene terahertz plasmon oscillators. IEEE Trans Nanotechnol 7(1):91–99

    Article  Google Scholar 

  13. Sanchez-Gil JA, Rivas JG (2006) Thermal switching of the scattering coefcients of terahertz surface plasmon polaritons impinging on a nite array of subwavelength grooves on semiconductor surfaces. Phys Rev B 73:205410

    Article  CAS  Google Scholar 

  14. Tao J, Hu B, He XY, Wang QJ (2013) Tunable subwavelength terahertz plasmonic stub waveguide filters. IEEE Trans Nanotechnol 12(6):1191–1197

    Article  CAS  Google Scholar 

  15. Falkovsky LA, Pershoguba S (2007) Optical far-infraredproperties of a graphene monolayer and multilayer. Phys Rev B76:153410

    Article  CAS  Google Scholar 

  16. Chen F, Yao* D, Liu Y (2014) Graphene–metal hybrid plasmonic switch. Appl Phys Express 7:082202

    Article  CAS  Google Scholar 

  17. Hibbins AP, Lockyear MJ, Sambles JR (2006) J Appl Phys 99:124903

    Article  CAS  Google Scholar 

  18. Hashemi M, Hosseini Farzad M, Mortensen NA, Xiao S (2013). Plasmonics 8:1059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moazami, A., Hashemi, M. & Shirazi, N.C. High Efficiency Tunable Graphene-Based Plasmonic Filter in the THz Frequency Range. Plasmonics 14, 359–363 (2019). https://doi.org/10.1007/s11468-018-0812-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0812-5

Keywords