Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Vibrational analysis of mandible trauma: experimental and numerical approaches

  • Original Article
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effectiveness of vibrational assessment of the mandible fracture patterns. Measurement of natural frequencies and associated vibrational mode shapes was performed to determine the relationship between the dynamic behavior of the human mandible and incidence of mandibular fractures using both in vitro modal testing and finite element analysis. Our results show that the natural frequencies of the human mandible in dry and wet conditions are 567 Hz and 501 Hz, respectively. The first vibrational mode of human mandible is a bending vibration with nodes located at the mandibular body where bone fracture is less likely to occur. By contrast, high vibration amplitudes were identified in the symphysis/parasymphysis and subcondyle regions where bone fractures tend occur. These findings indicate that the vibrational characteristics of the mandible are potential parameters for assessment of the mechanisms of injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Akkus O, Korkusuz F, Akin S, Akkas N (1998) Relation between mechanical stiffness and vibration transmission of fracture callus: an experimental study on rabbit tibia. Proc Instn Mech Eng H: J Biomed Eng 212:327–336

    Article  Google Scholar 

  2. Arksornnukit M, Taniguchi H, Ohyama T (2001) Rigidity of three different types of mandibular major connector through vibratory observations. Int J Prosthodont 14:510–516

    Google Scholar 

  3. Balshi SF, Allen FD, Wolfinger GJ, Balshi TJ (2005) A resonance frequency analysis assessment of maxillary and mandibular immediately loaded implants. Int J Oral maxillofac Implants 20:584–594

    Google Scholar 

  4. Banks P, Brown A (2001) Fracture of the facial skeleton. Reed Educational & Professional Publishing, Woburn, MA

    Google Scholar 

  5. Cornelini R, Cangini F, Covani U, Barone A, Buser D (2004) Immediate restoration of single-tooth implants in mandibular molar sites: a 12-month preliminary report. Int J Oral maxillofac Implants 19:855–860

    Google Scholar 

  6. Cornelissen P, Cornelissen M, Van der Perre G, Christensen AB, Ammitzboll F, Dyrbye C (1986) Assessment of tibial stiffness by vibration testing in situ- II. Influence of soft tissue, Joints and fibula. J Biomech 19:551–561

    Article  Google Scholar 

  7. Couteau B, Hobatho MC, Darmana R, Brignola JC, Arlaud JY (1998) Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties. J Biomech 31:383–386

    Article  Google Scholar 

  8. Ellis E, Moos KF, Attar A (1985) Ten years of mandibular fractures: an analysis of 2137 cases. Oral Surg 59:120–124

    Article  Google Scholar 

  9. Hiroko HM, Kimie O, Ryoji M, Yoshihiro T (1993) Numeric approach to the biomechanical analysis of thermal effects in coated implant. Int J Prosthod 6:564–572

    Google Scholar 

  10. Ho MH, Lee SY, Chen HH, Lee MC (1994) Three dimensional finite element analysis of the effects of posts on stress distribution in dentin. J Prosthet Dent 72:367–372

    Article  Google Scholar 

  11. Hobatho MC, Darmana R, Pastor P, Barrau JJ, Laroze S, Morucci JP (1991) Development of three-dimensional finite element model of a human tibia using experimental modal analysis. J Biomech 24:371–383

    Article  Google Scholar 

  12. Huang HM, Cheng KY, Chen CF, Ou GL, Lin CT, Lee SY (2005) Design and examination of a stability-detecting device for dental implants. Proc Inst Med Eng H: J Biomed Eng 219:203–211

    Article  Google Scholar 

  13. Huang HM, Chiu CL, Yeh CY, Lin CT, Lin LH, Lee SY (2003) Early detection of implant healing process using resonance frequency analysis. Clin Oral Impl Res 14:437–443

    Article  Google Scholar 

  14. Huang HM, Yeh CY, Pan LC, Lee SY, Wang MS, Chen CC (2001) Factors influencing the dynamic behavior of human teeth. Med Biol Eng Comput 39:176–181

    Article  Google Scholar 

  15. Jurist JM, Kianian K (1973) Three models of the vibrating ulna. J Biomech 6:331–342

    Article  Google Scholar 

  16. Kasra M, Shirazi-ADL A, Drouin G (1992) Dynamics of human lumbar intervertabral joints: experimental and finite-element investigations. Spine 17:93–102

    Article  Google Scholar 

  17. Khalil TB, Viano DC, Smith DL (1979) Experimental analysis of the vibrational characteristics of the human skull. J Sound Vibr 63:351–376

    Article  Google Scholar 

  18. Khalil TB, Viano DC, Taber LA (1981) Vibrational characteristics of the embalmed human femur. J Sound Vibr 75:417–436

    Article  Google Scholar 

  19. King RE, Scianna JM, Petuzzelli GJ (2004) Mandible fracture patters: A suburban trauma center experience. Am J Otolaryngol 25:301–307

    Article  Google Scholar 

  20. Kitazaki S, Griffin MJ (1995) A data correction method for surface measurement of vibration on the human body. J Biomech 28:885–890

    Article  Google Scholar 

  21. Kumaresan S, Radhakrishnan S (1996) Importance of partitioning membranes of the brain and the influence of the neck in head injury modeling. Med Biol Eng Comput 34:27–32

    Article  Google Scholar 

  22. Laski R, Ziccardi VB, Broder HL, Janal M (2004) Facial trauma: a recurrent disease? The potential role of disease prevention. J Oral Maxillofac Surg 62:685–688

    Article  Google Scholar 

  23. Lee SY, Huang HM, Lin CY, Shih YH (2000) In vivo and in vitro natural frequency analysis of periodontal conditions, an innovative method. J Periodont 71:632–640

    Article  Google Scholar 

  24. Lowet G, Van Audekercke R, Van der Perre G, Geusens P, Dequeker J, Lammens J (1993) The relation between resonant frequencies and torsional stiffness of long bones in vitro validation of a simple beam model. J Biomech 26:689–696

    Article  Google Scholar 

  25. Moaveni S (1999) Finite element analysis: theory and application with ANSYS. Prentice-Hall, New Jersey

    Google Scholar 

  26. Motamedi MH (2003) An assessment of maxillofacial fractures: a 5-year study of 237 patients. J Oral Maxillofac Surg 61:61–64

    Article  Google Scholar 

  27. Moyers RE (1988) Handbook of Orthodontics. Year Book Medical Publishers, Chicago

    Google Scholar 

  28. Nahum AM, Gatts JD, Gadd CW, Danforth J (1968) Impact tolerance of the skull and face. In: Proceedings of the 12th Stapp Car Crash Conference, pp. 302–317

  29. Nakatsuchi Y, Tsuchikane A, Nomura A (1996) The vibrational mode of the tibia and assessment of bone union in experimental fracture healing using the impulse response method. Med Eng Phys 18:575–583

    Article  Google Scholar 

  30. Natali AN, Pavan PG, Scarpa C (2004) Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament. Dent Mater 20:623–29

    Article  Google Scholar 

  31. Nokes LDM (1999) The use of low-frequency vibration measurement in orthopaedics. Proc Inst Med Eng H: J Biomed Eng 213:271–290

    Article  Google Scholar 

  32. Olson RA, Fonseca RJ, Leitler DL, Osbon DB (1982) Fractures of the mandible: A review of 580 cases. J Oral Maxillofac Surg 40:23–28

    Article  Google Scholar 

  33. Park JB, Lakes RS (1992) Biomaterials: an introduction. Plenum, New York

    Google Scholar 

  34. Robert WT, Gary ES. The stress analysis of human teeth. J Biomech 6:443–449

  35. Stalnaker RL, Fogle JL, McElhaney JH (1971) Driving point impedance characteristics of the head. J Biomech 4:127–139

    Article  Google Scholar 

  36. Thomsen JJ (1990) Modelling human tibia structural vibrations. J Biomech 23:215–228

    Article  Google Scholar 

  37. Torreira MG, Fernandez JR (2004) A three-dimensional computer model of the human mandible in two simulated standard trauma situations. J Cranio-Maxillofac Surg 32:303–307

    Article  Google Scholar 

  38. Van der Perre G, Van Audekercke R, Martens M, Mulier JC (1983) Indentification of in vivo vibration modes of human tibiae by modal analysis. ASME J Biomed Eng 105:244–248

    Article  Google Scholar 

  39. Viano DC, Bir C, Walilko T, Sherman D (2004) Ballistic impact to the forehead, zygoma, and mandible: comparison of human and frangible dummy face biomechanics. J Trauma 56:1305–1311

    Article  Google Scholar 

  40. Vollmer D, Meyer U, Joos U, Vegh A, Piffko J (2000) Experimental and finite element study of a human mandible. J Cranio-Maxillofac Surg 28:91–96

    Article  Google Scholar 

  41. Willinger R, Taleb L, Kopp CM (1995) Modal and temporal analysis of head mathematical models. J Neurotrauma 12:743–754

    Article  Google Scholar 

Download references

Acknowledgments

This study was sponsored by a grant (94CGH-TMU-16) from the Cathay General Hospital, Taipei, Taiwan, and, in part, by a grant (NHRI-EX93-9106PN) from the National Health Research Institutes, Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haw-Ming Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SL., Lee, SY., Lee, LY. et al. Vibrational analysis of mandible trauma: experimental and numerical approaches. Med Bio Eng Comput 44, 785–792 (2006). https://doi.org/10.1007/s11517-006-0095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0095-4

Keywords