Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Early afterdepolarisations and ventricular arrhythmias in cardiac tissue: a computational study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Afterdepolarisations are associated with arrhythmias in the heart, but are difficult to study experimentally. In this study we used a simplified computational model of 1D and 2D cardiac ventricular tissue, where we could control the size of the region generating afterdepolarisations, as well as the properties of the afterdepolarisation waveform. Provided the size of the afterdepolarisation region was greater than around 1 mm, propagating extrasystoles were produced in both 1D and 2D. The number of extrasystoles produced depended on the amplitude, period, and duration of the oscillatory EAD waveform. In 2D, re-entry was also initiated for specific combinations of EAD amplitude, period, and duration, with the afterdepolarisation region acting as a common pathway. The main finding from this modelling study is therefore that afterdepolarisations can act as potent sources of propagating extrasystoles, as well as a source of re-entrant activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cherry EM, Ehrlich JR, Nattel S et al (2007) Pulmonary vein re-entry—Properties and size matter: insights from a computational analysis. Heart Rhythm 4:1553–1562. doi:10.1016/j.hrthm.2007.08.017

    Article  Google Scholar 

  2. Choi B-R, Burton F, Salama G (2002) Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J Physiol 543:615–631. doi:10.1113/jphysiol.2002.024570

    Article  Google Scholar 

  3. Clayton RH (2001) Computational models of normal and abnormal action potential propagation in cardiac tissue: linking experimental and clinical cardiology. Physiol Meas 22:R15–R34. doi:10.1088/0967-3334/22/3/201

    Article  Google Scholar 

  4. Clayton RH, Panfilov AV (2008) A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog Biophys Mol Biol 96:19–43. doi:10.1016/j.pbiomolbio.2007.07.004

    Article  Google Scholar 

  5. Clayton RH, Holden AV, Tong WC (2003) Can endogenous, noise-triggered early afterdepolarisations initiate re-entry in a modified Luo-Rudy virtual tissue? Int J Bifurcat Chaos 13:3835–3843. doi:10.1142/S0218127403008934

    Article  MATH  Google Scholar 

  6. Fenton FH, Cherry EM, Hastings HM et al (2002) Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12:852–892. doi:10.1063/1.1504242

    Article  Google Scholar 

  7. Fozzard HA, Schoenberg M (1972) Strength-duration curves in cardiac Purkinje fibres: effects of liminal length and charge distribution. J Physiol 226:593–618

    Google Scholar 

  8. Gilmour JRF, Moise NS (1995) Triggered activity as a mechanism for inherited ventricular arrhythmias in German shepherd dogs. J Am Coll Cardiol 27:1526–1533. doi:10.1016/0735-1097(95)00618-4

    Article  Google Scholar 

  9. Gray RA, Pertsov AM, Jalife J (1998) Spatial and temporal organization during cardiac fibrillation. Nature 392:75–78. doi:10.1038/32164

    Article  Google Scholar 

  10. Greenstein J, Winslow R (2002) An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Biophys J 83:2918–2945

    Article  Google Scholar 

  11. Henriquez AP, Vogel R, Muller-Borer BJ et al (2001) Influence of dynamic gap junction resistance on impulse generation in ventricular myocardium: a computer simulation study. Biophys J 81:2112–2121

    Article  Google Scholar 

  12. Hinch R, Greenstein J, Tanskanen A et al (2004) A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes. Biophys J 87:3723–3736. doi:10.1529/biophysj.104.049973

    Article  Google Scholar 

  13. Huelsing DJ, Spitzer KW, Pollard AE (2000) Electrotonic suppression of early afterdepolarizations in isolated rabbit Purkinje myocytes. Am J Physiol Heart Circ Physiol 279:H250–H259

    Google Scholar 

  14. Huffaker R, Lamp S, Weiss J et al (2004) Intracellular calcium cycling, early afterdepolarizations, and reentry in simulated long QT syndrome. Heart Rhythm 1:441–448. doi:10.1016/j.hrthm.2004.06.005

    Article  Google Scholar 

  15. Huffaker R, Weiss JN, Kogan B (2007) Effects of early afterdepolarizations on re-entry in cardiac tissue: a simulation study. Am J Physiol Heart Circ Physiol 292:H3089–H3102. doi:10.1152/ajpheart.01309.2006

    Article  Google Scholar 

  16. Karma A (1993) Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys Rev Lett 71:1103–1107. doi:10.1103/PhysRevLett.71.1103

    Article  MATH  MathSciNet  Google Scholar 

  17. Katra R, Pruvot E, Laurita KR (2004) Intracellular calcium handling heterogeneities in intact guinea pig hearts. Am J Physiol Heart Circ Physiol 286:H648–H656. doi:10.1152/ajpheart.00374.2003

    Article  Google Scholar 

  18. ter Keurs HEDJ, Boyden PA (2007) Calcium and arrhythmogenesis. Physiol Rev 87:457–506. doi:10.1152/physrev.00011.2006

    Article  Google Scholar 

  19. Kohl P, Sachs F (2001) Mechano-electric feedback in cardiac cells. Philos Trans R Soc A 359:1173–1185. doi:10.1098/rsta.2001.0824

    Article  Google Scholar 

  20. Luo CH, Rudy Y (1994) A dynamic-model of the cardiac ventricular action-potential. 2. Afterdepolarizations, triggered activity, and potentiation. Circ Res 74:1097–1113

    Google Scholar 

  21. Nielsen PM, Le Grice IJ, Smaill BH et al (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol Heart Circ Physiol 260:H1365–H1378

    Google Scholar 

  22. Panfilov AV, Keldermann RH, Nash MP (2007) Drift and breakup of spiral waves in reaction-diffusion-mechanics systems. Proc Natl Acad Sci USA 104:7922–7926. doi:10.1073/pnas.0701895104

    Article  Google Scholar 

  23. Pogwizd SM, Corr PB (1990) Mechanisms underlying the development of ventricular fibrillation during early myocardial ischaemia. Circ Res 66:672–695

    Google Scholar 

  24. Pogwizd SM, Corr PB (1992) The contribution of nonreentrant mechanisms to malignant ventricular arrhythmias. Basic Res Cardiol 87:115–129

    Google Scholar 

  25. Rudy Y (2006) Computational biology in the study of cardiac ion channels and cell electrophysiology. Q Rev Biophys 39:57–116. doi:10.1017/S0033583506004227

    Article  Google Scholar 

  26. Schafferhofer-Steltzer I, Hofer E, Huelsing DJ et al (2005) Contributions of Purkinje-Myocardial coupling to suppression and facilitation of early afterdepolarization-induced triggered activity. IEEE Trans Biomed Eng 52:1522–1531. doi:10.1109/TBME.2005.851528

    Article  Google Scholar 

  27. Sosunov EA, Anhuyovsky EP, Shivilkin A et al (1999) Abnormal cardiac repolarization and impulse initiation in German shepherd dogs with inherited ventricular arrhythmias and sudden death. Cardiovasc Res 42:65–79. doi:10.1016/S0008-6363(98)00333-2

    Article  Google Scholar 

  28. Swissa M, Qu ZL, Ohara T et al (2002) Action potential duration restitution and ventricular fibrillation due to rapid focal excitation. Am J Physiol Heart Circ Physiol 282:H1915–H1923

    Google Scholar 

  29. Viswanathan PC, Rudy Y (1999) Pause induced early afterdepolarizations in the Long-QT syndrome: a simulation study. Cardiovasc Res 42:530–542. doi:10.1016/S0008-6363(99)00035-8

    Article  Google Scholar 

  30. Volders PGA, Vos MA, Szabo B et al (2000) Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res 46:376–392. doi:10.1016/S0008-6363(00)00022-5

    Article  Google Scholar 

  31. Winfree AT (1989) Electrical instability in cardiac muscle. J Theor Biol 138:353–405. doi:10.1016/S0022-5193(89)80200-0

    Article  MathSciNet  Google Scholar 

  32. Yan G-X, Wu Y, Liu T et al (2001) Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation 103:2851–2856

    Google Scholar 

  33. Zeng JL, Rudy Y (1995) Early afterdepolarizations in cardiac myocytes—mechanism and rate dependence. Biophys J 68:949–964

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the British Heart Foundation for funding this work through the award of Project Grant PG/03/102/1582. We would also like to thank both the Integrative Biology eScience project (EPSRC GR/S72023/01) and the White Rose Grid (http://www.wrgrid.org.uk) for making computer resources available for this work. We are especially grateful to Flavio Fenton and Elizabeth Cherry from Cornell University for providing parameter sets and source code for the 4VSIM model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Clayton.

Electronic supplementary material

Appendix

Appendix

The equations for the 4VSIM model are based on four state variables; u (equivalent to membrane voltage in an ionic model), v, w, and s, which are given by the following differential equations. In each case H denotes the Heaviside step function, so H(x) has the value 1 if x > 0, and 0 otherwise;

$$ \frac{{{\text{d}}u}}{{{\text{d}}t}} = - (J_{\text{fi}} + J_{\text{si}} + J_{\text{so}} ) $$
$$ \frac{{{\text{d}}v}}{{{\text{d}}t}} = (1 - H(u - u_{c} ))\frac{(1 - v)}{{\tau_{v}^{ - } }} - H(u - u_{c} )\frac{v}{{\tau_{v}^{ + } }} $$
$$ \frac{{{\text{d}}w}}{{{\text{d}}t}} = (1 - H(u - u_{c} ))\frac{(1 - w)}{{\tau_{w}^{ - } }} - H(u - u_{c} )\frac{w}{{\tau_{w}^{ + } }} $$
$$ \frac{{{\text{d}}s}}{{{\text{d}}t}} = \left( {0.5\left( {1 + \tanh ((u - u_{c,{\rm{si}}} )/x_{k} )} \right) - s} \right)r_{s} $$

The following equations are used to calculate the parameters that depend on u, v, w and s.

$$ \tau_{v}^{ - } = \tau_{v2}^{ - } H(u - u_{v} ) + \tau_{v1}^{ - } (1 - H(u - u_{v} )) $$
$$ r_{s} = r_{s}^{ + } H(u - u_{c} ) + r_{s}^{ - } (1 - H(u - u_{c} )) $$
$$ J_{\text{fi}} = \frac{{ - vH(u - u_{c} )(u - u_{c} )(1 - u)}}{{\tau_{d} }} $$
$$ J_{\text{si}}=\frac{ - ws}{{\tau_{\text{si}} }} $$
$$ J_{\text{so}} = \frac{{u(1 - H(u - u_{c} ))}}{{\tau_{o} }} + H(u - u_{c} )\tau_{\text{so}} $$
$$ \tau_{\text{so}} = \tau_{{\text{so}}1} + \frac{{\tau_{{\text{so}}2} }}{2}(1 + \tanh ((u - u_{\text{so}} )/x_{{\text{so}}k} )) $$

The fixed parameters are given in the following table:

Parameter

Value

u c

0.23

τ + v

3.33

u v

0.055

τ v1

19.6

τ v2

1250.0

τ + w

100.0

τ w

150.0

u c,si

0.65

x k

0.23

r + s

0.02

r s

0.08

τ d

0.118

τ si

5.0922

τ o

15.0

τ so1

0.009

τ so2

0.078

x sok

0.25

u so

0.8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarle, S., Clayton, R.H. Early afterdepolarisations and ventricular arrhythmias in cardiac tissue: a computational study. Med Biol Eng Comput 47, 291–300 (2009). https://doi.org/10.1007/s11517-008-0405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0405-0

Keywords