Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimizing the automatic selection of spike detection thresholds using a multiple of the noise level

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Thresholding is an often-used method of spike detection for implantable neural signal processors due to its computational simplicity. A means for automatically selecting the threshold is desirable, especially for high channel count data acquisition systems. Estimating the noise level and setting the threshold to a multiple of this level is a computationally simple means of automatically selecting a threshold. We present an analysis of this method as it is commonly applied to neural waveforms. Four different operators were used to estimate the noise level in neural waveforms and set thresholds for spike detection. An optimal multiplier was identified for each noise measure using a metric appropriate for a brain–machine interface application. The commonly used root-mean-square operator was found to be least advantageous for setting the threshold. Investigators using this form of automatic threshold selection or developing new unsupervised methods can benefit from the optimization framework presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aksenova TI, Chibirova OK, Dryga OA, Tetko IV, Benabid AL, Villa AEP (2003) An unsupervised automatic method for sorting neuronal spike waveforms in awake and freely moving animals. Methods 30(2):178–187

    Article  Google Scholar 

  2. Bankman IN, Johnson KO, Schneider W (1993) Optimal detection, classification, and superposition resolution in neural waveform recordings. IEEE Trans Biomed Eng 40(8):836–841

    Article  Google Scholar 

  3. Bar-Hillel A, Spiro A, Stark E (2006) Spike sorting: Bayesian clustering of non-stationary data. J Neurosci Methods 157(2):303–316

    Article  Google Scholar 

  4. Benitez R, Nenadic Z (2008) Robust unsupervised detection of action potentials with probabilistic models. IEEE Trans Biomed Eng 55(4):1344–1354

    Article  Google Scholar 

  5. Borghi T, Gusmeroli R, Spinelli AS, Baranauskas G (2007) A simple method for efficient spike detection in multiunit recordings. J Neurosci Methods 163(1):176–180

    Article  Google Scholar 

  6. Bossetti CA, Carmena JM, Nicolelis MAL, Wolf PD (2004) Transmission latencies in a telemetry-linked brain–machine interface. IEEE Trans Biomed Eng 51(6):919–924

    Article  Google Scholar 

  7. Brychta RJ, Tuntrakool S, Appalsamy M, Keller NR, Robertson D, Shiavi RG, Diedrich A (2007) Wavelet methods for spike detection in mouse renal sympathetic nerve activity. IEEE Trans Biomed Eng 54(1):82–93

    Article  Google Scholar 

  8. Burrows BL, Talbot RF (1985) The mean deviation. Math Gazette 69(448):87–91

    Article  Google Scholar 

  9. Chandra R, Optican LM (1997) Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network. IEEE Trans Biomed Eng 44(5):403–412

    Article  Google Scholar 

  10. Choi JH, Jung HK, Kim T (2006) A new action potential detector using the MTEO and its effects on spike sorting systems at low signal-to-noise ratios. IEEE Trans Biomed Eng 53(4):738–746

    Article  Google Scholar 

  11. Farshchi S, Pesterev A, Guenterberg E, Mody I, Judy JW (2007) An embedded system architecture for wireless neural recording. In: 3rd Int IEEE/EMBS Conference on Neural Engineering, pp 327–332

  12. Fee MS, Mitra PP, Kleinfeld D (1996) Variability of extracellular spike waveforms of cortical neurons. J Neurophysiol 76(6):3823–3833

    Google Scholar 

  13. Gozani SN, Miller JP (1994) Optimal discrimination and classification of neuronal action potential waveforms from multiunit, multichannel recordings using software-based linear filters. IEEE Trans Biomed Eng 41(4):358–372

    Article  Google Scholar 

  14. Guillory KS, Normann RA (1999) A 100-channel system for real time detection and storage of extracellular spike waveforms. J Neurosci Methods 91(1–2):21–29

    Article  Google Scholar 

  15. Harrison RR (2003) A low-power integrated circuit for adaptive detection of action potentials in noisy signals. Conf Proc IEEE Eng Med Biol Soc 4:3325–3328

    Google Scholar 

  16. Harrison RR (2008) The design of integrated circuits to observe brain activity. Proc IEEE 96(7):1203–1216

    Article  Google Scholar 

  17. Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circuits 42(1):123–133

    Article  Google Scholar 

  18. Hatsopoulos NG, Xu Q, Amit Y (2007) Encoding of movement fragments in the motor cortex. J Neurosci 27(19):5105–5114

    Article  Google Scholar 

  19. Jensen W, Rousche PJ (2006) On variability and use of rat primary motor cortex responses in behavioral task discrimination. J Neural Eng 3(1):7–13

    Article  Google Scholar 

  20. Kim KH, Kim SJ (2000) Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier. IEEE Trans Biomed Eng 47(10):1406–1411

    Article  Google Scholar 

  21. Kim KH, Kim SJ (2003) A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio. IEEE Trans Biomed Eng 50(8):999–1011

    Article  Google Scholar 

  22. Kim S, McNames J (2007) Automatic spike detection based on adaptive template matching for extracellular neural recordings. J Neurosci Methods 165(2):165–174

    Article  Google Scholar 

  23. Leiser SC, Moxon KA (2007) Responses of trigeminal ganglion neurons during natural whisking behaviors in the awake rat. Neuron 53(1):117–133

    Article  Google Scholar 

  24. Nenadic Z, Burdick JW (2005) Spike detection using the continuous wavelet transform. IEEE Trans Biomed Eng 52(1):74–87

    Article  Google Scholar 

  25. Nenadic Z, Burdick JW (2006) A control algorithm for autonomous optimization of extracellular recordings. IEEE Trans Biomed Eng 53(5):941–955

    Article  Google Scholar 

  26. Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci USA 100(19):11041–11046

    Article  Google Scholar 

  27. Obeid I (2007) Comparison of spike detectors based on simultaneous intracellular and extracellular recordings. In: 3rd Int IEEE/EMBS Conference Neural Engineering, pp 410–413

  28. Obeid I, Wolf PD (2004) Evaluation of spike-detection algorithms for a brain–machine interface application. IEEE Trans Biomed Eng 51(6):905–911

    Article  Google Scholar 

  29. Olsson RH III, Wise KD (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid State Circuits 40(12):2796–2804

    Article  Google Scholar 

  30. Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91(1):515–532

    Article  Google Scholar 

  31. Pouzat C, Mazor O, Laurent G (2002) Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J Neurosci Methods 122(1):43–57

    Article  Google Scholar 

  32. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16(8):1661–1687

    Article  MATH  Google Scholar 

  33. Rizk M, Obeid I, Callender SH, Wolf PD (2007) A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system. J Neural Eng 4(3):309–321

    Article  Google Scholar 

  34. Rutishauser U, Schuman EM, Mamelak AN (2006) Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci Methods 154(1):204–224

    Article  Google Scholar 

  35. Snider RK, Bonds AB (1998) Classification of non-stationary neural signals. J Neurosci Methods 84(1–2):155–66

    Article  Google Scholar 

  36. Sodagar AM, Wise KD, Najafi K (2007) A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. IEEE Trans Biomed Eng 54(6):1075–1088

    Article  Google Scholar 

  37. Soto E, Manjarrez E, Vega R (1997) A microcomputer program for automated neuronal spike detection and analysis. Int J Med Inform 44(3):203–212

    Article  Google Scholar 

  38. Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP (2005) Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Trans Neural Syst Rehabil Eng 13(4):524–541

    Article  Google Scholar 

  39. Thakur PH, Lu H, Hsiao SS, Johnson KO (2007) Automated optimal detection and classification of neural action potentials in extra-cellular recordings. J Neurosci Methods 162(1):364–376

    Article  Google Scholar 

  40. Watkins PT, Santhanam G, Shenoy KV, Harrison RR (2004) Validation of adaptive threshold spike detector for neural recording. Conf Proc IEEE Eng Med Biol Soc 6:4079–4082

    Google Scholar 

  41. Zumsteg ZS, Kemere C, O’Driscoll S, Santhanam G, Ahmed RE, Shenoy KV, Meng TH (2005) Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems. IEEE Trans Neural Syst Rehabil Eng 13(3):272–279

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Iyad Obeid for his helpful comments. This work was supported by Grant Number F31EB007897 from the National Institute of Biomedical Imaging and Bioengineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rizk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizk, M., Wolf, P.D. Optimizing the automatic selection of spike detection thresholds using a multiple of the noise level. Med Biol Eng Comput 47, 955–966 (2009). https://doi.org/10.1007/s11517-009-0451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0451-2

Keywords