Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Helical axis calculation based on Burmester theory: experimental comparison with traditional techniques for human tibiotalar joint motion

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In prosthetics and orthotics design, it is sometimes necessary to approximate the multiaxial motion of several human joints to a simple rotation about a single fixed axis. A new technique for the calculation of this axis is proposed, originally based on Burmester’s theory. This was compared with traditional approaches based on the mean and finite helical axes. The three techniques were assessed by relevant optimal axis estimation in in vitro measurements of tibiotalar joint motion. A standard jig and radiostereometry were used in two anatomical specimens to obtain accurate measurements of joint flexion. The performance of each technique was determined by comparing the motion based on the resulting axis with the experimental data. Random noise with magnitude typically similar to that of the skin motion was also added to the measured motion. All three techniques performed well in identifying a single rotation axis for tibiotalar joint motion. Burmester’s theory provides an additional method for human joint motion analysis, which is particularly robust when experimental data are considerably error affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alfaro-Adrian J, Gill HS, Murray DW (1999) Mid-term migration of a cemented total hip replacement assessed by radiostereometric analysis. Int Orthop 23:140–144

    Article  Google Scholar 

  2. Besier TF, Sturnieks DL, Alderson JA, Lloyd DG (2003) Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech 36(8):1159–1168

    Article  Google Scholar 

  3. Blaha JD, Mancinelli CA, Simons WH et al (2003) Kinematics of the human knee using an open chain cadaver model. Clin Orthop Relat Res 410:25–34

    Article  Google Scholar 

  4. Blankevoort L, Huiskes R, De Lange A (1990) Helical axes of passive knee joint motions. J Biomech 23(12):1219–1229

    Article  Google Scholar 

  5. Bottlang M, Marsh JL, Brown TD (1999) Articulated external fixation of the ankle: minimizing motion resistance by accurate axis alignment. J Biomech 32:63–70

    Article  Google Scholar 

  6. Burmester L (1877) Geradfuhrung durch das Kurbelgetriebe. Civilingenieur 23:227–250

    Google Scholar 

  7. Corazza F, Sancisi N, Parenti-Castelli V, Leardini A (2005) A procedure for the evaluation of physiological ankle orthosis design parameters. Proceedings of ECCOMAS 2005, Madrid, Spain

  8. Corazza F, Stagni R, Parenti-Castelli V, Leardini A (2005) Articular contact at the tibiotalar joint in passive flexion. J Biomech 38:1205–1212

    Article  Google Scholar 

  9. Danieli GA, Mundo D, Sciarra V (2001) Use of Burmester’s circular theory in the determination of the optimal four-bar link reproducing actual tibia-femur relative motion. Proceedings of ASME Congress, New York, USA

  10. De Lange A, Huiskes R, Kauer JMG (1990) Measurement errors in Roentgen-stereophotogrammetric joint-motion analysis. J Biomech 23:259–269

    Article  Google Scholar 

  11. Di Gregorio R, Parenti-Castelli V, O’Connor JJ, Leardini A (2007) Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med Biol Eng Comput 45(3):305–313

    Article  Google Scholar 

  12. Dul J, Johnson GE (1985) A kinematic model of the human ankle. J Biomed Eng 7:137–143

    Article  Google Scholar 

  13. Feikes JD, O’Connor JJ, Zavatsky AB (2003) A constraint-based approach to modelling the mobility of the human knee joint. J Biomech 36(1):125–129

    Article  Google Scholar 

  14. Franci R, Parenti-Castelli V (2007) A 5-5 one degree of freedom fully-parallel mechanism for the modelling of passive motion at the human ankle joint. Proceedings of ASME-IDETC/CIE 2007, Las Vegas, Nevada

  15. Franci R, Parenti-Castelli V (2008) A one-degree-of-freedom spherical wrist for the modelling of passive motion of the human ankle joint. Proceedings of IAK 2008, Lima, Perù

  16. Gage JR, Deluca PA, Renshaw TS (1995) Gait analysis: principles and applications. J Bone Joint Surg Am 77:1607–1623

    Google Scholar 

  17. Gauffin H, Areblad M, Tropp H (1993) Three-dimensional analysis of the talocrural and subtalar joints in single-limb stance. Clin Biomech 8:307–314

    Article  Google Scholar 

  18. Goodfellow JW, O’Connor JJ (1978) The mechanics of the knee and prosthesis design. J Bone Joint Surg Br 60-B:358–369

    Google Scholar 

  19. Hollister AM, Jatana S, Singh AK et al (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268

    Google Scholar 

  20. Inman V (1976) The joints of the ankle. Williams and Wilkins, Baltimore

    Google Scholar 

  21. Innocenti C (1995) Polynomial solution of the spatial Burmester problem. J Mech Des 117:64–68

    Article  Google Scholar 

  22. Iwaki H, Pinskerova V, Freeman MAR (2000) Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 82(8):1189–1195

    Article  Google Scholar 

  23. Jonsson H, Karrholm J (1994) Three-dimensional knee joint movements during a step-up: evaluation after anterior cruciate ligament rupture. J Orthop Res 12(6):769–779

    Article  Google Scholar 

  24. Komistek RD, Stiehl JB, Buechel FF et al (2000) A determination of ankle kinematics using fluoroscopy. Foot Ankle Int 21(4):343–350

    Google Scholar 

  25. Leardini A, O’Connor JJ, Catani F, Giannini S (1999) Kinematics of the human ankle complex in passive flexion; a single degree of freedom system. J Biomech 32:111–118

    Article  Google Scholar 

  26. Leardini A, O’Connor JJ, Catani F, Giannini S (2000) The role of the passive structures in the mobility and stability of the human ankle joint: a literature review. Foot Ankle Int 21(7):602–615

    Google Scholar 

  27. Leardini A, Catani F, Giannini S, O’Connor JJ (2001) Computer-assisted design of the sagittal shapes of a ligament-compatible total ankle replacement. Med Biol Eng Comput 39(2):168–175

    Article  Google Scholar 

  28. Leardini A, Stagni R, O’Connor JJ (2001) Mobility of the subtalar joint in the intact ankle complex. J Biomech 34(6):805–809

    Article  Google Scholar 

  29. Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2):212–225

    Article  Google Scholar 

  30. Lundberg A, Svensson OK, Nemeth G, Selvik G (1989) The axis of rotation of the ankle joint. J Bone Joint Surg Br 71(1):94–99

    Google Scholar 

  31. Maganaris CN (2004) A predictive model of moment-angle characteristics in human skeletal muscle: application and validation in muscles across the ankle joint. J Theor Biol 230(1):89–98

    Article  MathSciNet  Google Scholar 

  32. Mannel H, Marin F, Claes L, Durselen L (2004) Anterior cruciate ligament rupture translates the axes of motion within the knee. Clin Biomech 19(2):130–135

    Article  Google Scholar 

  33. Manter JT (1941) Movements of the subtalar and transverse tarsal joints. Anat Rec 80:397–410

    Article  Google Scholar 

  34. Michelson JD, Schmidt GR, Mizel MS (2000) Kinematics of a total arthroplasty of the ankle: comparison to normal ankle motion. Foot Ankle Int 21(4):278–284

    Google Scholar 

  35. Polliack AA, Swanson MC, Landsberger SE, McNeal DR (2001) Development of a testing apparatus for structural stiffness evaluation of ankle-foot orthoses. J Prosthet Orthot 13:74–87

    Article  Google Scholar 

  36. Procter P, Paul JP (1982) Ankle joint biomechanics. J Biomech 15:627–634

    Article  Google Scholar 

  37. Ramsey DK, Wretenberg PF (1999) Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clin Biomech 14(9):595–611

    Article  Google Scholar 

  38. Sabatini AM (2005) Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Med Biol Eng Comput 43(1):94–101

    Article  MathSciNet  Google Scholar 

  39. Sancisi N, Parenti-Castelli V (2007) A 1-Dof parallel spherical wrist for the modelling of the knee passive motion. Proceedings of IFToMM 2007, Besançon, France

  40. Sancisi N, Parenti-Castelli V (2007) On the synthesis of a 5-5 parallel mechanism reproducing the knee passive motion by means of the Burmester theory. Proceedings of CMSM2007, Monastir, Tunisia

  41. Sandor GN, Erdman AG (1984) Advanced mechanism design: analysis and synthesis, vol 2. Prentice-Hall Book Company, Inc., Englewood Cliffs, NJ

    Google Scholar 

  42. Scott SH, Winter DA (1993) Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J Biomech 26(9):1091–1104

    Article  Google Scholar 

  43. Segal D, Wiss DA, Whitelaw GP (1985) Functional bracing and rehabilitation of ankle fractures. Clin Orthop Relat Res 199:39–45

    Google Scholar 

  44. Siegler S, Chen J, Schneck CD (1988) The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints—Part 2: kinematics. J Biomech Eng 110:364–373

    Article  Google Scholar 

  45. Siegler S, Udupa JK, Ringleb SI et al (2005) Mechanics of the ankle and subtalar joints revealed through a 3D quasi-static stress MRI technique. J Biomech 38(3):567–578

    Article  Google Scholar 

  46. Singh AK, Starkweather KD, Hollister AM et al (1992) Kinematics of the ankle: a hinge axis model. Foot Ankle 13:439–446

    Google Scholar 

  47. Stagni R, Leardini A, Ensini A (2004) Ligament fibre recruitment at the human ankle joint complex in passive flexion. J Biomech 37:1823–1829

    Article  Google Scholar 

  48. Stauffer RN, Chao EY, Brewster RC (1977) Force and motion analysis of the normal, diseased and prosthetic ankle joint. Clin Orthop Relat Res 127:189–196

    Google Scholar 

  49. Stokdijk M, Meskers CG, Veeger HE et al (1999) Determination of the optimal elbow axis for evaluation of placement of prostheses. Clin Biomech 14:177–184

    Article  Google Scholar 

  50. Stokdijk M, Nagels J, Rozing PM (2000) The glenohumeral joint rotation centre in vivo. J Biomech 33:1629–1636

    Article  Google Scholar 

  51. Valderrabano V, Hintermann B, Nigg BM et al (2003) Kinematic changes after fusion and total replacement of the ankle. Part 1: range of motion. Foot Ankle Int 24(12):881–887

    Google Scholar 

  52. Valderrabano V, Hintermann B, Nigg BM et al (2003) Kinematic changes after fusion and total replacement of the ankle. Part 2: movement transfer. Foot Ankle Int 24(12):888–896

    Google Scholar 

  53. Van den Bogert AJ, Smith GD, Nigg BM (1994) In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. J Biomech 23:1477–1488

    Article  Google Scholar 

  54. Van Sint JS, Salvia P, Hilal I et al (2002) Registration of 6-DOFs electrogoniometry and CT medical imaging for 3D joint modeling. J Biomech 35(11):1475–1484

    Article  Google Scholar 

  55. Walker PS, Kurosawa H, Rovick JS, Zimmerman RA (1985) External knee joint design based on normal motion. J Rehabil Res Dev 22(1):9–22

    Article  Google Scholar 

  56. Westblad P, Hashimoto T, Winson I et al (2002) Differences in ankle-joint complex motion during the stance phase of walking as measured by superficial and bone-anchored markers. Foot Ankle Int 23(9):856–863

    Google Scholar 

  57. Wilson DR, Feikes JD, Zavatsky AB, O’Connor JJ (2000) The components of passive knee movement are coupled to flexion angle. J Biomech 33(4):465–473

    Article  Google Scholar 

  58. Woltring HJ (1991) Data processing and error analysis. In: Cappozzo N and Berme A (eds) Biomechanics of human movements. Bertec Corporation, Worthington, OH, pp 203–237

  59. Woltring HJ, Huiskes R, De Lange A, Veldpaus FE (1985) Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech 18:379–389

    Article  Google Scholar 

  60. Woltring HJ, Long K, Osterbauer PJ, Fuhr AW (1994) Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J Biomech 27(12):1415–1432

    Article  Google Scholar 

  61. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I, Standardization and Terminology Committee of the International Society of Biomechanics (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: ankle, hip, and spine. J Biomechanics 35:534–538

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Leardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancisi, N., Parenti-Castelli, V., Corazza, F. et al. Helical axis calculation based on Burmester theory: experimental comparison with traditional techniques for human tibiotalar joint motion. Med Biol Eng Comput 47, 1207–1217 (2009). https://doi.org/10.1007/s11517-009-0522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0522-4

Keywords