Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Frequency-domain reconstruction of signals in electrical bioimpedance spectroscopy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The use of an amplitude/phase retrieval algorithm in electrical bioimpedance spectroscopy (EIS) that allows a new technique to reconstruct the impedance spectrum in the frequency-domain is reported. To the authors’ knowledge this is the first time the proposed algorithm has been used to calculate the modulus or phase of a bioimpedance in EIS from one of these two experimentally obtained parameters. The algorithmic technique is demonstrated in EIS, when wide-bandwidth amplifiers, phase-detectors, and high speed converters determine spectra over frequencies up to 500 kHz at isolated points in the frequency interval. Simulated data from bioimpedance models (Cole and 2R1C circuit impedance functions) and experimental data from a known electrical impedance are used to show the applicability and limitations of the technique with a phase retrieval and a modulus retrieval algorithm. Results comparing this technique with the Kramers–Kronig technique that retrieves the imaginary part of an impedance from its real part are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Åberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S (2004) Skin cancer identification using multifrequency electrical impedance—a potential screening tool. IEEE Trans Biomed Eng 51:2097–2102

    Article  Google Scholar 

  2. Bertemes-Filho P (2002) Tissue characterisation using an Impedance Spectroscopy Probe. PhD Thesis, The University of Sheffield, UK

  3. Brown BH (2003) Electrical impedance tomography (EIE): a review. J Med Eng Technol 3:97–108

    Article  Google Scholar 

  4. Cole KS (1940) Permeability and impermeability of cell membranes for ions. In: Proceedings of the Cold Spring Harbor Symposia, vol 8, pp 110–122

  5. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics: I Alternating current characteristics. J Chem Phys 9:97–108

    Google Scholar 

  6. Dai T, Soleimani M, Adler A (2008) EIT image reconstruction with four dimensional regularization. Med Biol Eng Comput 46(9):889–999

    Article  Google Scholar 

  7. Debye P (1929–Reprint:1965) Polar molecules. Dover Publications, New York

  8. Fuoss R, Kirkwood JG (1941) Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems. J Am Chem Soc 63(2):385–394

    Article  Google Scholar 

  9. Gilad O, Horesh L, Holder DS (2007) Design of electrodes and current limits for low frequency electrical impedance tomography of the brain. Med Biol Eng Comput 45(7):621–633

    Article  Google Scholar 

  10. Grimnes S, Martinsen OG (2008) Bioimpedance and bioelectricity: basics, 2nd edn. Academic Press, London

    Google Scholar 

  11. Haschka M, Krebs V (2007) Advances in fractional calculus theoretical developments and applications in physics and engineering, chap. A direct approximation of fractional cole-cole systems by ordinary first-order processes. Springer, Netherlands, pp 257–270

  12. Hayes M, Lin JS, Oppenheim AV (1980) Signal reconstruction from phase or magnitude. IEEE Trans Acoust Speech ASSP 28:672–680

    Google Scholar 

  13. Holder DS (2004) Electrical impedance tomography: methods, history and applications, 1st edn. Taylor and Francis, New York

    Google Scholar 

  14. McAdams ET, Jossinet J (1996) Problems in equivalent circuit modelling of the electrical properties of biological tissues. Bioelectrochem Bioenerg 40:147–152

    Article  Google Scholar 

  15. Nebuya S, Noshiro M, Brown BH, Smallwood RH, Milnes P (2002) Accuracy of an optically isolated tetra-polar impedance measurement system. Med Biol Eng Comput 40:647–650

    Article  Google Scholar 

  16. Oppenheim AV, Lin JS, Curtis S (1983) Signal synthesis and reconstruction from partial Fourier domain information. J Opt Soc Am 73:1413–1420

    Article  Google Scholar 

  17. Proakis JG, Manolakis DK (1996) Discrete-time signal processing, 3rd edn. Prentice-Hall, Boston, pp 617–681

    Google Scholar 

  18. Proakis JG, Manolakis DK (1996) Discrete-time signal processing, 3rd edn. Prentice-Hall, Boston, pp 213–215

    Google Scholar 

  19. Quartieri T, Oppenheim AV (1981) Iterative techniques for minimum phase signal reconstruction from phase or magnitude. IEEE Trans Acoust Speech ASSP 29:1187–1193

    Google Scholar 

  20. Riu PJ, Lapaz C (1999) Practical limits of the Kramers-Kronig relationships applied to experimental bioimpedance data. Ann NY Acad Sci 873:374–380

    Google Scholar 

  21. Seoane F, Ferreira J, Sanchez JJ, Bragós R (2008) An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications. Physiol Meas 29:267–278

    Article  Google Scholar 

  22. Suesserman MF, Spelman FA, Rubinstein JT (1991) In vitro measurement and characterization of current density profiles produced by non-recessed, simple-recessed, and radially varying recessed stimulating electrodes. IEEE Trans Biomed Eng 38(5):401–408

    Article  Google Scholar 

  23. Sun H, Charef A, Tsao Y, Onaral B (1992) Analysis of polarization dynamics by singularity decomposition method. Ann Biomed Eng 20:321–335

    Article  Google Scholar 

  24. Tom VT, Quartieri T, Hayes MH, McClellan JH (1981) Convergence of iterative nonexpansive signal reconstruction algorithms. IEEE Trans Acoust Speech ASSP 29:1052–1058

    Google Scholar 

  25. Tribolet J (1977) A new phase unwrapping algorithm. IEEE Trans Acoust Speech ASSP-25:170–177

    Google Scholar 

  26. Waterworth AR (2000) Data analysis techniques of measured biological impedance. PhD Thesis, The University of Sheffield, UK

  27. Yang Y, Wang J (2005) A Design of bioimpedance spectrometer for early detection of pressure ulcer. In: Proceedings of the IEEE engineering in medicine and biology 27th annual conference. Shanghai, China, pp 6602–6604

  28. Yerworth RJ, Bayford RH, Brown B, Milnes PM, Conway M, Holder DS (2003) Electrical impedance tomography spectroscopy (EITS) for human head imaging. Physiol Meas 24:477–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander S. Paterno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterno, A.S., Stiz, R.A. & Bertemes-Filho, P. Frequency-domain reconstruction of signals in electrical bioimpedance spectroscopy. Med Biol Eng Comput 47, 1093–1102 (2009). https://doi.org/10.1007/s11517-009-0533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0533-1

Keywords