Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Error potential detection during continuous movement of an artificial arm controlled by brain–computer interface

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Patients who benefit from Brain–Computer Interfaces (BCIs) may have difficulties to generate more than one distinct brain pattern which can be used to control applications. Other BCI issues are low performance, accuracy, and, depending on the type of BCI, a long preparation and/or training time. This study aims to show possible solutions. First, we used time-coded motor imagery (MI) with only one pattern. Second, we reduced the training time by recording only 20 trials of active MI to set up a BCI classifier. Third, we investigated a way to record error potentials (ErrPs) during continuous feedback. Ten subjects controlled an artificial arm by performing MI over target time periods between 1 and 4 s. The subsequent movement of this arm served as continuous feedback. Discrete events, which are required to elicit ErrPs, were added by mounting blinking LEDs on top of the continuously moving arm to indicate the future movements. Time epochs after these events were used to evaluate ErrPs offline. The achieved error rate for the arm movement was on average 26.9%. Obtained ErrPs looked similar to results from the previous studies dealing with error detection and the detection rate was above chance level which is a positive outcome and encourages further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398:297–298

    Article  PubMed  CAS  Google Scholar 

  2. Blankertz B, Dornhege G, Krauledat M, Müller KR, Kunzmann V, Losch F, Curio G (2006) The Berlin brain–computer interface: EEG-based communication without subject training. IEEE Trans Neural Syst Rehab Eng 14:147–152

    Article  Google Scholar 

  3. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1990) Effects of errors in choice reaction tasks on the ERP under focused and divided attention. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research. University Press, Tilburg, pp 192–195

  4. Falkenstein M, Hoormann J, Christ S, Hohnsbein J (2000) ERP components on reaction errors and their functional significance: a tutorial. Biol Psychol 51(2–3):87–107

    Article  PubMed  CAS  Google Scholar 

  5. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol 70:510–523

    Article  PubMed  CAS  Google Scholar 

  6. Ferrez PW, Millán J del R (2005) You are wrong! Automatic detection of interaction errors from brainwaves. In: 19th International joint conference on artificial intelligence, pp 1413–1418

  7. Ferrez PW (2007) Error-related EEG potentials in brain-computer interfaces. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

  8. Ferrez PW, Millán J del R (2008) Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans Biomed Eng 55(3):923–929

    Article  PubMed  Google Scholar 

  9. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188

    Article  Google Scholar 

  10. Graimann B, Huggins JE, Levine SP, Pfurtscheller G (2002) Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin Neurophysiol 113:43–47

    Article  PubMed  CAS  Google Scholar 

  11. Horki P, Solis-Escalante T, Neuper C, Müller-Putz G (2011) Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Med Biol Eng Comput 49(5):567–577

    Article  PubMed  Google Scholar 

  12. Kalcher J, Flotzinger D, Neuper C, Gölly S, Pfurtscheller G (1996) Graz brain–computer interface II: towards communication between humans and computers based on online classification of three different EEG patterns. Med Biol Eng Comp 34:382–388

    Article  CAS  Google Scholar 

  13. Kleih S, Kaufmann T, Zickler C, Halder S, Leotta F, Cincotti F, Aloise F, Riccio A, Herbert C, Mattia D, Kübler A, Out of the frying pan into the fire—the P300-based BCI faces real-world challenges. In: Schouenborg J, Garwicz M, Danielsen N (eds) Brain–machine interfaces implications for science, clinical practice and society. Progress in Brain Research, Elsevier, pp 27–46 (2011)

  14. Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR (2005) Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface. Neurology 64:1775–1777

    Article  PubMed  Google Scholar 

  15. Mason SG, Bashashati A, Fatourechi M, Navarro KF, Birch GE (2007) A comprehensive survey of brain interface technology designs. Ann Biomed Eng 35:137–169

    Article  PubMed  CAS  Google Scholar 

  16. Mathalon DH, Whitfield SL, Ford JM (2003) Anatomy of an error: ERP and fMRI. Biol Psychol 64(1–2):119–141

    Article  PubMed  Google Scholar 

  17. Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain–computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng 8:211–214

    Article  PubMed  CAS  Google Scholar 

  18. Miltner WHR, Braun CH, Coles MGH (1997) Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a ‘generic’ neural system for error-detection. J Cognitive Neurosci 9:788–798

    Article  Google Scholar 

  19. Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2005) EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 382:169–174

    Article  PubMed  Google Scholar 

  20. Müller-Putz GR, Scherer R, Neuper C, Pfurtscheller G (2006) Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Trans Neural Syst Rehabil Eng 14:30–37

    Article  PubMed  Google Scholar 

  21. Müller-Putz GR, Scherer R, Brunner R, Leeb R, Pfurtscheller G (2008) Better than random? A closer look on BCI results. Int J Bioelectromagnet 10:52–55

    Google Scholar 

  22. Müller-Putz GR, Scherer R, Pfurtscheller G, Neuper C (2010) Temporal coding of brain patterns for direct limb control in humans. Front Neurosci 4:34

    PubMed  Google Scholar 

  23. Müller-Putz GR, Kaiser V, Solis-Escalante T, Pfurtscheller G (2010) Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG. Med Biol Eng Comput 48(4):331–341

    Article  Google Scholar 

  24. Neuper C, Müller-Putz GR, Scherer R, Pfurtscheller G (2006) Motor imagery and EEG-based control of spelling devices and neuroprostheses. Prog Brain Res 159:393–409

    Article  PubMed  Google Scholar 

  25. O’Connell RG, Dockree PM, Bellgrove MA, Kelly SP, Hester R, Garavan H, Robertson IH, Foxe JJ (2007) The role of cingulate cortex in the detection of errors with and without awareness: a high-density electrical mapping study. Eur J Neurosci 25(8):2571–2579

    Article  PubMed  Google Scholar 

  26. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  PubMed  CAS  Google Scholar 

  27. Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C (2000) Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 292:211–214

    Article  PubMed  CAS  Google Scholar 

  28. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain–computer communication. P IEEE 89:1123–1134

    Article  Google Scholar 

  29. Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) “Thought”-control of functional electrical stimulation to restore handgrasp in a patient with tetraplegia. Neurosci Lett 351:33–36

    Article  PubMed  CAS  Google Scholar 

  30. Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) EEG-based communication: presence of an error potential. Clin Neurophysiol 111(12):2138–2144

    Article  PubMed  CAS  Google Scholar 

  31. Van Schie HT, Mars RB, Coles MGH, Bekkering H (2004) Modulation of activity in medial frontal and motor cortices during error observation. Nat Neurosci 7:549–554

    Article  PubMed  CAS  Google Scholar 

  32. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the European ICT Programme Project FP7-224631. This paper only reflects the authors’ views and funding agencies are not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Kreilinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreilinger, A., Neuper, C. & Müller-Putz, G.R. Error potential detection during continuous movement of an artificial arm controlled by brain–computer interface. Med Biol Eng Comput 50, 223–230 (2012). https://doi.org/10.1007/s11517-011-0858-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0858-4

Keywords