Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Modelling clavicular and scapular kinematics: from measurement to simulation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Musculoskeletal models are intended to be used to assist in prevention and treatments of musculoskeletal disorders. To capture important aspects of shoulder dysfunction, realistic simulation of clavicular and scapular movements is crucial. The range of motion of these bones is dependent on thoracic, clavicular and scapular anatomy and therefore different for each individual. Typically, patient or subject measurements will therefore not fit on a model that uses a cadaveric morphology. Up till now, this problem was solved by adjusting measured bone rotations such that they fit on the model, but this leads to adjustments of on average 3.98° and, in some cases, even more than 8°. Two novel methods are presented that decrease this discrepancy between experimental data and simulations. For one method, the model is scaled to fit the subject, leading to a 34 % better fit compared to the existing method. In the other method, the set of possible joint rotations is increased by allowing some variation on motion constraints, resulting in a 42 % better fit. This change in kinematics also affected the kinetics: muscle forces of some important scapular stabilizing muscles, as predicted by the Delft Shoulder and Elbow Model, were altered by maximally 17 %. The effect on the glenohumeral joint contact force was however marginal (1.3 %). The methods presented in this paper might lead to more realistic shoulder simulations and can therefore be considered a step towards (clinical) application, especially for applications that involve scapular imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ackland DC, Lin Y-C, Pandy MG (2012) Sensitivity of model predictions of muscle function to changes in moment arms and muscle–tendon properties: a Monte-Carlo analysis. J Biomech 45(8):1463–1471

    Article  PubMed  Google Scholar 

  2. Ambrósio J, Quental C, Pilarczyk B et al (2011) Multibody biomechanical models of the upper limb. Symposium on human body dynamics, pp 4–17

  3. Arnold AS, Salinas S, Asakawa DJ et al (2000) Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aided Surg 5(2):108–119

    Article  CAS  PubMed  Google Scholar 

  4. Blana D, Hincapie JG, Chadwick EK et al (2008) A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems. J Biomech 41(8):1714–1721

    Article  PubMed Central  PubMed  Google Scholar 

  5. Charlton IW, Johnson GR (2006) A model for the prediction of the forces at the glenohumeral joint. Proc Inst Mech Eng, Part H: J Eng Med 220(8):801–812

    Article  CAS  Google Scholar 

  6. de Groot JH (1997) The variability of shoulder motions recorded by means of palpation. Clin Biomech 12(7–8):461–472

    Article  Google Scholar 

  7. De Groot JH (1998) The shoulder: a kinematic and dynamic analysis of motion and loading. PhD thesis, Delft University of Technology

  8. de Groot JH, Brand R (2001) A three-dimensional regression model of the shoulder rhythm. Clin Biomech 16(9):735–743

    Article  Google Scholar 

  9. Dickerson CR, Chaffin DB, Hughes RE (2007) A mathematical musculoskeletal shoulder model for proactive ergonomic analysis. Comput Methods in Biomech Biomed Eng 10(6):389–400

    Article  Google Scholar 

  10. Dubowsky SR, Rasmussen J, Sisto SA et al (2008) Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces. J Biomech 41(14):2981–2988

    Article  PubMed  Google Scholar 

  11. Duda GN, Brand D, Freitag S et al (1996) Variability of femoral muscle attachments. J Biomech 29(9):1185–1190

    Article  CAS  PubMed  Google Scholar 

  12. Garner BA, Pandy MG (2001) Musculoskeletal model of the upper limb based on the visible human male dataset. Comput Methods Biomech Biomed Eng 4(2):93–126

    Article  CAS  Google Scholar 

  13. Harris RI, Vu DH, Sonnabend DH et al (2001) Anatomic variance of the coracoclavicular ligaments. J Shoulder Elbow Surg 10(6):585–588

    Article  CAS  PubMed  Google Scholar 

  14. Högfors C, Sigholm G, Herberts P (1987) Biomechanical model of the human shoulder—I. Elements. J Biomech 20(2):157–166

    Article  PubMed  Google Scholar 

  15. Högfors C, Peterson B, Sigholm G et al (1991) Biomechanical model of the human shoulder joint—II. The shoulder rhythm. J Biomech 24(8):699–709

    Article  PubMed  Google Scholar 

  16. Holzbaur KRS, Murray WM, Delp SL (2005) A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng 33(6):829–840

    Article  PubMed  Google Scholar 

  17. Karduna AR, McClure PW, Michener LA et al (2001) Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng 123(2):184–190

    Article  CAS  PubMed  Google Scholar 

  18. Karlsson D, Peterson B (1992) Towards a model for force predictions in the human shoulder. J Biomech 25(2):189–199

    Article  CAS  PubMed  Google Scholar 

  19. Klein Breteler MD, Spoor CW, Van der Helm FCT (1999) Measuring muscle and joint geometry parameters of a shoulder for modeling purposes. J Biomech 32(11):1191–1197

    Article  CAS  PubMed  Google Scholar 

  20. Matias R, Andrade C, Veloso AP (2009) A transformation method to estimate muscle attachments based on three bony landmarks. J Biomech 42(3):331–335

    Article  PubMed  Google Scholar 

  21. Moseley JB, Jobe FW, Pink M et al (1992) Emg analysis of the scapular muscles during a shoulder rehabilitation program. Am J Sports Med 20(2):128–134

    Article  PubMed  Google Scholar 

  22. Nikooyan AA, Veeger HEJ, Westerhoff P et al (2010) Validation of the Delft Shoulder and Elbow Model using in vivo glenohumeral joint contact forces. J Biomech 43(15):3007–3014

    Article  CAS  PubMed  Google Scholar 

  23. Nikooyan AA, Veeger HE, Chadwick EK et al (2011) Development of a comprehensive musculoskeletal model of the shoulder and elbow. Med Biol Eng Comput 49(12):1425–1435

    Article  PubMed  Google Scholar 

  24. Praagman M, Chadwick EKJ, van der Helm FCT et al (2006) The relationship between two different mechanical cost functions and muscle oxygen consumption. J Biomech 39(4):758–765

    Article  CAS  PubMed  Google Scholar 

  25. Pronk GM, van der Helm FCT, Rozendaal LA (1993) Interaction between the joints in the shoulder mechanism: the function of the costoclavicular, conoid and trapezoid ligaments. Proc Inst Mech Eng [H] 207(4):219–229

    Article  CAS  Google Scholar 

  26. Quental C, Folgado J, Ambrósio J et al (2012) A multibody biomechanical model of the upper limb including the shoulder girdle. Multibody Syst Dyn 28(1–2):83–108

    Google Scholar 

  27. Scheys L, Spaepen A, Suetens P et al (2008) Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture 28(4):640–648

    Article  PubMed  Google Scholar 

  28. van Andel C, van Hutten K, Eversdijk M et al (2009) Recording scapular motion using an acromion marker cluster. Gait Posture 29(1):123–128

    Article  PubMed  Google Scholar 

  29. van der Helm FCT (1994) A finite element musculoskeletal model of the shoulder mechanism. J Biomech 27(5):551–553, 555–569

    Google Scholar 

  30. van der Helm FCT, Pronk GM (1995) Three-dimensional recording and description of motions of the shoulder mechanism. J Biomech Eng 117(1):27–40

    Article  PubMed  Google Scholar 

  31. Veeger HEJ, van der Helm FCT (2007) Shoulder function: the perfect compromise between mobility and stability. J Biomech 40(10):2119–2129

    Article  CAS  PubMed  Google Scholar 

  32. Winby CR, Lloyd DG, Kirk TB (2008) Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters. J Biomech 41(8):1682–1688

    Article  CAS  PubMed  Google Scholar 

  33. Wu G, van der Helm FCT, Veeger HEJ et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992

    Article  CAS  PubMed  Google Scholar 

  34. Zhou JL, Tits AL, Craig TL (1997) User’s Guide for FFSQP Version 3.7: A FORTRAN code for solving constrained nonlinear (minimax) optimizaton problems, generating iterates, satisfying all inequality and linear constraints. University of Maryland

Download references

Acknowledgments

The research leading to these results has received funding from the European Information and Communication Technologies Community Seventh Framework Program (FP7/2007-2013) under grant agreement no. 248693.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Bolsterlee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolsterlee, B., Veeger, H.E.J. & van der Helm, F.C.T. Modelling clavicular and scapular kinematics: from measurement to simulation. Med Biol Eng Comput 52, 283–291 (2014). https://doi.org/10.1007/s11517-013-1065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1065-2

Keywords