Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Fitting the measured bioimpedance spectroscopy (BIS) data to the Cole model and then extracting the Cole parameters is a common practice in BIS applications. The extracted Cole parameters then can be analysed as descriptors of tissue electrical properties. To have a better evaluation of physiological or pathological properties of biological tissue, accurate extraction of Cole parameters is of great importance. This paper proposes an improved Cole parameter extraction based on bacterial foraging optimization (BFO) algorithm. We employed simulated datasets to test the performance of the BFO fitting method regarding parameter extraction accuracy and noise sensitivity, and we compared the results with those of a least squares (LS) fitting method. The BFO method showed better robustness to the noise and higher accuracy in terms of extracted parameters. In addition, we applied our method to experimental data where bioimpedance measurements were obtained from forearm in three different positions of the arm. The goal of the experiment was to explore how robust Cole parameters are in classifying position of the arm for different people, and measured at different times. The extracted Cole parameters obtained by LS and BFO methods were applied to different classifiers. Two other evolutionary algorithms, GA and PSO were also used for comparison purpose. We showed that when the classifiers are fed with the extracted feature sets by BFO fitting method, higher accuracy is obtained both when applying on training data and test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amir M, Bedra S, Benkouda S, Fortaki T (2014) Bacterial foraging optimisation and method of moments for modelling and optimisation of microstrip antennas. IET Microw Antenna P 8:295–300

  2. Ayllon D, Seoane F, Gil-Pita R (2009) Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements–a comparative study. Conf Proc IEEE Eng Med Biol Soc. doi:10.1109/IEMBS.2009.5334494

    PubMed  Google Scholar 

  3. Bai Q (2010) Analysis of particle swarm optimization algorithm. J Comput Inf Sci 3:180–184

    Google Scholar 

  4. Bogonez-Franco P, Nescolarde L, Bragos R, Rosell-Ferrer J, Yandiola I (2009) Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch. Physiol Meas 30:573–587

    Article  CAS  PubMed  Google Scholar 

  5. Browne MW (2000) Cross-validation methods. J Math Psychol 44:108–132

    PubMed  Google Scholar 

  6. Buendia R, Gil-Pita R, Seoane F (2011) Cole parameter estimation from the modulus of the electrical bioimpeadance for assessment of body composition. a full spectroscopy approach. J Electr Bioimp 2:72–78

    Article  Google Scholar 

  7. Cole KS (1940) Permeability and impermeability of cell membranes for ions. Quant Biol 8:110–122

    Article  CAS  Google Scholar 

  8. Das S, Biswas A, Dasgupta S, Abraham A (2009) Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Stud Comput Intell 203:23–55

    Article  Google Scholar 

  9. Dian PR, Siti MS, Siti SY (2011) Particle swarm optimization: technique, system and challenges. Int J Comput Appl 14:19–27

    Google Scholar 

  10. Freeborn TJ, Maundy B, Elwakil A (2011) Numerical extraction of cole-cole impedance parameters from step response. Nonlinear Theory Appl 2:548–561

    Google Scholar 

  11. Freeborn TJ, Maundy B, Elwakil AS (2014) Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements. Med Biol Eng Comput 52:749–758

    Article  PubMed  Google Scholar 

  12. Gholami-Boroujeny S, Eshghi M (2012) Non-linear active noise cancellation using a bacterial foraging optimisation algorithm. IET Signal Process 6:364–373

    Article  Google Scholar 

  13. Grasso G, Alafaci C, Passalacqua M, Morabito A, Buemi M, Salpietro FM, Tomasello F (2002) Assessment of human brain water content by cerebral bioelectrical impedance analysis: a new technique and its application to cerebral pathological conditions. Neurosurgery 50:1064–1074

    PubMed  Google Scholar 

  14. Grimnes S, Martinsen OG (2008) Bioimpedance and bioelectricity basics, 2nd edn. Elsevier, London

    Google Scholar 

  15. Halter RJ, Hartov A, Paulsen KD, Schned A, Heaney J (2008) Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues. Physiol Meas 29:S111–S123

    Article  PubMed  Google Scholar 

  16. Hanmandlu M, Verma OP, Kumar NK, Kulkarni M (2009) A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Trans Instrum Meas 58:2867–2879

    Article  Google Scholar 

  17. Hornero G, Diaz D, Casas O (2013) Bioimpedance system for monitoring muscle and cardiovascular activity in the stump of lower-limb amputees. Physiol Meas 34:189–201

    Article  CAS  PubMed  Google Scholar 

  18. Jaffrin MY, Morel H (2009) Extracellular volume measurements using bioimpedance spectroscopy-hanai method and wrist-ankle resistance at 50 khz. Med Biol Eng Comput 47:77–84

    Article  PubMed  Google Scholar 

  19. Kun S, Ristic B, Peura RA, Dunn RM (1999) Real-time extraction of tissue impedance model parameters for electrical impedance spectrometer. Med Biol Eng Comput 37:428–432

    Article  CAS  PubMed  Google Scholar 

  20. Kun S, Ristic B, Peura RA, Dunn RM (2003) Algorithm for tissue ischemia estimation based on electrical impedance spectroscopy. IEEE Trans Biomed Eng 34:1352–1359

    Article  Google Scholar 

  21. Lin W, Liu PX (2006) Hammerstein model identification based on bacterial foraging. Electron Lett 42:1332–1333

    Article  Google Scholar 

  22. Lukaski HC (2013) Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr 67:S2–9

    Article  PubMed  Google Scholar 

  23. Mellert F, Winkler K, Schneider C, Dudykevych T, Welz A, Osypka M, Gersing E, Preusse CJ (2011) Detection of (reversible) myocardial ischemic injury by means of electrical bioimpedance. IEEE Trans Biomed Eng 58:1511–1518

    Article  PubMed  Google Scholar 

  24. Mishra S (2005) A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Trans Evolut Comput 9:61–73

    Article  Google Scholar 

  25. Nejadgholi I, Batkin I, Bolic M, Adler A, Shirmohammadi S (2014) Segmental spectral decomposition as a time persistent method of bioimpedance spectroscopy feature extraction. http://www.sce.carleton.ca/faculty/adler/eit2014/proc-page18

  26. Nyboer J (1950) Electrical impedance plethysmography; a physical and physiologic approach to peripheral vascular study. Circulation 2:811–821

    Article  CAS  PubMed  Google Scholar 

  27. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Conf Syst Mag 22:52–67

    Article  Google Scholar 

  28. Passino KM (2005) Biomimicry for optimization, control, and automation. Springer, Berlin

    Google Scholar 

  29. Paterno A, Negri LH, Bertemes-Filho P (2012) Efficient computational techniques in bioimpedance. Spectroscopy. doi:10.5772/36307:INTECH

    Google Scholar 

  30. Patnaik SS, Panda AK (2012) Particle swarm optimization and bacterial foraging optimization techniques for optimal current harmonic mitigation by employing active power filter. Appl Comput Intell Soft Comput 2012:1–10

    Article  Google Scholar 

  31. Rigaud B, Hamzaoui L, Frikha MR, Chauveau N, Morucci JP (1995) In vitro tissue characterization and modelling using electrical impedance measurements in the 100 hz-10 mhz frequency range. Physiol Meas 16:A15–28

    Article  CAS  PubMed  Google Scholar 

  32. Rothlingshofer L, Ulbrich M, Hahne S, Leonhardt S (2011) Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations. J Electr Bioimp 2:79–85

    Article  Google Scholar 

  33. Van-Loan MD, Withers P, Matthie J, Mayclin PL (1993) Use of bio-impedance spectroscopy (bis) to determine extracellular fluid (ecf), intracellular fluid (icf), total body water (tbw), and fat-free mass (ffm). Human Body Compos 60:67–70

    Article  CAS  Google Scholar 

  34. Yang Y, Ni W, Sun Q, Wen H, Teng Z (2013) Improved cole parameter extraction based on the least absolute deviation method. Physiol Meas 34:1239–1252

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded in part by Mitacs Canada, Connect Canada, NSERC and Nuraleve Inc. We would also like to thank our colleagues, Dr. Isar Nejadgholi, Hershel Caytak, Dr. Abeye Mekonnen and Dr. Crystal Blais for providing us with the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Gholami-Boroujeny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami-Boroujeny, S., Bolic, M. Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms. Med Biol Eng Comput 54, 643–651 (2016). https://doi.org/10.1007/s11517-015-1355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1355-y

Keywords