Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The advances of topology optimization techniques in orthopedic implants: A review

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Metal implants are widely used in the treatment of orthopedic diseases. However, owing to the mismatched elastic modulus of the bone and implants, stress shielding often occurs clinically which can result in failure of the implant or fractures around the implant. Topology optimization (TO) is a technique that can provide more efficient material distribution according to the objective function under the special load and boundary conditions. Several researchers have paid close attention to TO for optimal design of orthopedic implants. Thanks to the development of additive manufacturing (AM), the complex structure of the TO design can be fabricated. This article mainly focuses on the current stage of TO technique with respect to the global layout and hierarchical structure in orthopedic implants. In each aspect, diverse implants in different orthopedic fields related to TO design are discussed. The characteristics of implants, methods of TO, validation methods of the newly designed implants, and limitations of current research have been summarized. The review concludes with future challenges and directions for research.

Graphical abstract

Wang TO design of global layout and local structure of implants in diverse fields of orthopedic

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Denard PJ, Raiss P, Gobezie R, Edwards TB, Lederman E (2018) Stress shielding of the humerus in press-fit anatomic shoulder arthroplasty: review and recommendations for evaluation. J Shoulder Elb Surg 27(6):1139–1147. https://doi.org/10.1016/j.jse.2017.12.020

    Article  Google Scholar 

  2. Teles AR, Yavin D, Zafeiris CP, Thomas KC, Lewkonia P, Nicholls FH, Swamy G, Jacobs WB (2018) Fractures after removal of spinal instrumentation: revisiting the stress-shielding effect of instrumentation in spine fusion. World Neurosurg 116:e1137–e1e43. https://doi.org/10.1016/j.wneu.2018.05.187

    Article  PubMed  Google Scholar 

  3. Al-Tamimi PC Fernandes PR, editors. Topology optimization to reduce the stress shielding effect for orthopedic applications. Procedia CIRP 65:202–206. https://doi.org/10.1016/j.procir.2017.04.032

  4. Arabnejad S, Johnston B, Tanzer M, Pasini D (2017) Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res 35(8):1774–1783. https://doi.org/10.1002/jor.23445

    Article  PubMed  CAS  Google Scholar 

  5. RS EKI, Nomura S (2005) Influence of marginal bone resorption on stress around an implant – a three-dimensional finite element analysis. J Oral Rehabil 32:279–286. https://doi.org/10.1111/j.1365-2842.2004.01413.x

    Article  Google Scholar 

  6. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. MAT SCI ENG R: A 243(1):244–249. https://doi.org/10.1016/S0921-5093(97)00808-3

    Article  Google Scholar 

  7. Saravana Kumar G, George SP (2017) Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect. Proc Inst Mech Eng H J Eng Med 231(2):149–159. https://doi.org/10.1177/0954411916686125

    Article  Google Scholar 

  8. Bendsøe MP, Sigmund O 2003 Topology optimization - theory, methods, and applications: Springer Verlag

  9. Zhu J-H, Zhang W-H, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Computat Methods Eng 23(4):595–622. https://doi.org/10.1007/s11831-015-9151-2

    Article  Google Scholar 

  10. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. COMPUT METHOD APPL M 71(2):197–224. https://doi.org/10.1016/0045-7825(88)90086-2

    Article  Google Scholar 

  11. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012

    Article  PubMed  CAS  Google Scholar 

  12. Brekelmans WAMRE, Burdeaux BD (1972) A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand 43:301–317. https://doi.org/10.3109/17453677208998949

    Article  PubMed  CAS  Google Scholar 

  13. R CGSPK 2010 Oct. editor Application of topology optimization in modern additive manufacturing. 21st Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference

  14. Li Q, Steven GP, Xie YM (1999) On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization. Structural optimization 18(1):67–73. https://doi.org/10.1007/BF01210693

    Article  Google Scholar 

  15. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524. https://doi.org/10.1038/nmat1421

    Article  PubMed  CAS  Google Scholar 

  16. Bends M (1989) Optimal shape design as a material distribution problem Struct. Optimization 3:193–202. https://doi.org/10.1007/BF01650949

    Article  Google Scholar 

  17. Cregoire AFJ, Anca-Maria T (2002) A level-set method for shape optimization. CR MATH 334:1125–1130 S1631-073X(02)02412-3

    Google Scholar 

  18. Fan Z, Xia L, Lai W, Xia Q, Shi T (2019) Evolutionary topology optimization of continuum structures with stress constraints. Struct Multidiscip Optim 59(2):647–658. https://doi.org/10.1007/s00158-018-2090-4

    Article  Google Scholar 

  19. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373. https://doi.org/10.1002/nme.1620240207

    Article  Google Scholar 

  20. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896. https://doi.org/10.1016/0045-7949(93)90035-C

    Article  Google Scholar 

  21. Xue R, Liu C, Zhang W, Zhu Y, Tang S, Du Z, Guo X (2019) Explicit structural topology optimization under finite deformation via Moving Morphable Void (MMV) approach. Comput Methods Appl Mech Eng 344:798–818. https://doi.org/10.1016/j.cma.2018.10.011

    Article  Google Scholar 

  22. Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY (2017) Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C Mater Biol Appl 76:1328–1343. https://doi.org/10.1016/j.msec.2017.02.094

    Article  PubMed  CAS  Google Scholar 

  23. Li SJ, Xu QS, Wang Z, Hou WT, Hao YL, Yang R, Murr LE (2014) Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method. Acta Biomater 10(10):4537–4547. https://doi.org/10.1016/j.actbio.2014.06.010

    Article  PubMed  CAS  Google Scholar 

  24. Ataee A, Li Y, Fraser D, Song G, Wen CJM, Design (2018) Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater Des 137(jan.):345–354. https://doi.org/10.1016/j.matdes.2017.10.040

    Article  CAS  Google Scholar 

  25. Arash A, Yuncang L, Milan B, Cuie WJAM (2018) Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Metarialia 158:354–368. https://doi.org/10.1016/j.actamat.2018.08.005

    Article  CAS  Google Scholar 

  26. S Zhao WTH, QS Xu, SJ Li, YL Hao, R Yang (2018) Ti-6Al-4V lattice structures fabricated by electron beam melting for biomedical applications. Titanium in Medical and Dental Applications:277-301

  27. Tan X, Tan YJ 2018 3D printing of metallic cellular scaffolds for bone implants. p. 297-316

  28. Docquier P-L, Paul L, Cartiaux O, Delloye C, Banse X (2010) Computer-assisted resection and reconstruction of pelvic tumor sarcoma. Sarcoma 2010:125162. https://doi.org/10.1155/2010/125162

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 15(1):115. https://doi.org/10.1186/s12938-016-0236-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Al-Tamimi AA, Huang B, Vyas C, Hernandez M, Peach C, Bartolo P (2019) Topology optimised metallic bone plates produced by electron beam melting: a mechanical and biological study. Int J Adv Manuf Technol 104:104–210. https://doi.org/10.1007/s00170-019-03866-0

    Article  Google Scholar 

  31. Bobbert FSL, Lietaert K, Eftekhari AA, Pouran B, Ahmadi SM, Weinans H, Zadpoor AA (2017) Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater 53:572–584. https://doi.org/10.1016/j.actbio.2017.02.024

    Article  PubMed  CAS  Google Scholar 

  32. Chen C-S, Cheng C-K, Liu C-L, Lo W-H (2001) Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 23(7):485–493. https://doi.org/10.1016/S1350-4533(01)00076-5

    Article  Google Scholar 

  33. Al-Tamimi AA, Fernandes (2017) Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon. Virtual Phys Prototy 12(2):141–151. https://doi.org/10.1080/17452759.2017.1307769

    Article  Google Scholar 

  34. WH HR, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134

    Google Scholar 

  35. Liu J, Zhan Y, Tian F, Liu M, Zhao X (2019) Optimization of artificial bone internal structure by topology optimization: finite element analysis. IOP Conference Series: Materials Science and Engineering 493. https://doi.org/10.1088/1757-899x/493/1/012149

  36. Zhong Z-C, Wei S-H, Wang J-P (2006) Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys 28(1):90–98. https://doi.org/10.1016/j.medengphy.2005.03.007

    Article  PubMed  Google Scholar 

  37. Augat P, von Rüden C (2018) Evolution of fracture treatment with bone plates. Injury 49:S2–S7. https://doi.org/10.1016/S0020-1383(18)30294-8

    Article  PubMed  Google Scholar 

  38. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov KK, Bazaka K (2017) Metallic biomaterials: current challenges and opportunities. Materials (Basel) 10(8). https://doi.org/10.3390/ma10080884

  39. Uhthoff HK, Poitras P, Backman DS (2006) Internal plate fixation of fractures: short history and recent developments. J Orthop Sci 11(2):118–126. https://doi.org/10.1007/s00776-005-0984-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Al-Tamimi AA, P Chris, Bartolo Paulo (2018) Topology optimization of metallic locking compression plates produced using electron beam melting. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018). 10.25341/D41G66

  41. Bruns TE (2005) A reevaluation of the SIMP method with filtering and an alternative formulation for solid–void topology optimization. STRUCT MULTIDISCIP O 30(6):428–436. https://doi.org/10.1007/s00158-005-0537-x

    Article  Google Scholar 

  42. Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21:90–108. https://doi.org/10.1007/s001580050174

    Article  Google Scholar 

  43. Al-Tamimi AA, Quental C, Folgado J, Peach C, Bartolo P (2019) Stress analysis in a bone fracture fixed with topology-optimised plates. Biomech Model Mechanobiol 19:693–699. https://doi.org/10.1007/s10237-019-01240-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lovald S, Baack B, Gaball C, Gartb O (2010) Biomechanical optimization of bone plates used in rigid fixation of mandibular symphysis fractures. J Oral Maxillofac Surg 68(8):1833–1841. https://doi.org/10.1016/j.joms.2009.09.108

    Article  PubMed  Google Scholar 

  45. Teo JWC, Khan SF 2019 Topology optimization of mandible fracture plate. IOP Conference Series: Materials Science and Engineering: IOP Publishing; 2019. p. 012049

  46. Liu Y, Fan Y, Jiang X (2017) A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis. Biomed Eng Online 16(1):131–142. https://doi.org/10.1186/s12938-017-0422-z

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ouyang H, Deng Y, Xie P, Yang Y, Jiang B, Zeng C, Huang W (2017) Biomechanical comparison of conventional and optimised locking plates for the fixation of intraarticular calcaneal fractures: a finite element analysis. COMPUT METHOD BIOMEC 20(12):1339–1349. https://doi.org/10.1080/10255842.2017.1361938

    Article  Google Scholar 

  48. Şensoy AT, Kaymaz I, Ertaş Ü (2020) Development of particle swarm and topology optimization-based modeling for mandibular distractor plates. Swarm and Evolutionary Computation 53:53. https://doi.org/10.1016/j.swevo.2020.100645

    Article  Google Scholar 

  49. Freutel M, Galbusera F, Ignatius A, Dürselen L (2015) Material properties of individual menisci and their attachments obtained through inverse FE-analysis. J Biomech 48(8):1343–1349. https://doi.org/10.1016/j.jbiomech.2015.03.014

    Article  PubMed  Google Scholar 

  50. Wu C, Zheng K, Fang J, Steven GP, Li Q (2020) Time-dependent topology optimization of bone plates considering bone remodeling. Comput Methods Appl Mech Eng:359. https://doi.org/10.1016/j.cma.2019.112702

  51. Lemón L (2016) Topology optimization process for new designs of reconstruction plates used for bridging large mandibular defects. Department of Biomedical Engineering 34(15):534–539

    Google Scholar 

  52. Sutradhar A, Park J, Carrau D, M JM (2014) Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis. Comput Biol Med 52:8–17. https://doi.org/10.1016/j.compbiomed.2014.06.002

    Article  PubMed  Google Scholar 

  53. Sutradhar A, Park J, Carrau D (2016) Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med Biol Eng Comput 54(7):1123–1135. https://doi.org/10.1007/s11517-015-1418-0

    Article  PubMed  Google Scholar 

  54. Dai N, Zhu J-F, Zhang M, Meng L-Y, Yu X-L, Zhang Y-H, Liu B-Y, Zhang S-L (2018) Design of a maxillofacial prosthesis based on topology optimization. J Mech Med Biol 18(0):1850024. https://doi.org/10.1142/s0219519418500240

    Article  Google Scholar 

  55. Luo D, Rong Q, Chen Q (2017) Finite-element design and optimization of a three-dimensional tetrahedral porous titanium scaffold for the reconstruction of mandibular defects. Med Eng Phys 47:176–183. https://doi.org/10.1016/j.medengphy.2017.06.015

    Article  PubMed  Google Scholar 

  56. CarlosA Gómez Pérez HIM-C 2017 Raquel Espinosa-Castañeda, editor computer assisted design and structural topology optimization of customized craniofacial implants. Proceedings of the ASME International Mechanical Engineering Congress and Exposition; 2017

  57. Iqbal T, Wang L, Li D, Dong E, Fan H, Fu J, Hu C (2019) A general multi-objective topology optimization methodology developed for customized design of pelvic prostheses. Med Eng Phys 69:8–16. https://doi.org/10.1016/j.medengphy.2019.06.008

    Article  PubMed  Google Scholar 

  58. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. JBJS 89(4):780–785. https://doi.org/10.2106/JBJS.F.00222

    Article  Google Scholar 

  59. Azzam K, Meneghini RM 2017 Periprosthetic fracture of the femur after total hip arthroplasty. complications after primary total hip arthroplasty. p. 105-17

  60. Cooke PH, Newman JH (1988) Fractures of the femur in relation to cemented hip prostheses. The Journal of bone and joint surgery British volume 70(3):386–389

    Article  CAS  Google Scholar 

  61. Ries C, Boese CK, Dietrich F, Miehlke W, Heisel C (2019) Femoral stem subsidence in cementless total hip arthroplasty: a retrospective single-centre study. Int Orthop 43(2):307–314. https://doi.org/10.1007/s00264-018-4020-x

    Article  PubMed  Google Scholar 

  62. Kang H, Lin C-Y, Hollister SJ (2010) Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscip O 42(4):633–644. https://doi.org/10.1007/s00158-010-0508-8

    Article  Google Scholar 

  63. Fernandes P, Rodrigues H, Jacobs C (1999) A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput Method Biomec 2(2):125–138. https://doi.org/10.1080/10255849908907982

    Article  Google Scholar 

  64. Munteanu S, Munteanu D, Gheorghiu B, Bedo T, Gabor C, Cremascoli P, Alemani F, Pop MA (2019) Additively manufactured femoral stem topology optimization: case study. Materials Today: Proceedings 19:1019–1025. https://doi.org/10.1016/j.matpr.2019.08.016

    Article  Google Scholar 

  65. Fraldi M, Esposito L, Perrella G (2010) Topological optimization in hip prosthesis design. Biomech Model Mechanobiol 9(4):389–402. https://doi.org/10.1007/s10237-009-0183-0

    Article  PubMed  CAS  Google Scholar 

  66. Kharmanda G (2016) Integration of multi-objective structural optimization into cementless hip prosthesis design: improved Austin-Moore model. Comput Method Biomec 19(14):1557–1566. https://doi.org/10.1080/10255842.2016.1170121

    Article  CAS  Google Scholar 

  67. Mohammad Reza Niroomand FB 2018 editor application of topology optimization in design of stem profile in hip implants using finite element method. Int J Advanced Design and Manufacturing Technology

  68. Rajaa S. Abass MAA, Musaddiq Al Ali 2019 editor shape and topology optimization design for total hip joint implant. Proceedings of the World Congress on Engineering; 2019; London, U.K

  69. Xie YMSG (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896. https://doi.org/10.1016/0045-7949(93)90035-C

    Article  Google Scholar 

  70. Rahchamani R, Soheilifard R (2019) Three-dimensional structural optimization of a cementless hip stem using a bi-directional evolutionary method. Comput Methods Biomech Biomed Engin:1–11. https://doi.org/10.1080/10255842.2019.1661387

  71. Boyle C, Kim IY (2011) Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization. J Biomech 44(9):1722–1728. https://doi.org/10.1016/j.jbiomech.2011.03.038

    Article  PubMed  Google Scholar 

  72. Kim IY, Kwak BM (2002) Design space optimization using a numerical design continuation method. INT J NUMER METH ENG 53(8):1979–2002. https://doi.org/10.1002/nme.369

    Article  Google Scholar 

  73. Andrade-Campos A, Ramos A, Simões JA (2012) A model of bone adaptation as a topology optimization process with contact. J Biomed Sci Eng 05(05):229–244. https://doi.org/10.4236/jbise.2012.55030

    Article  Google Scholar 

  74. Kutyłowski R, Szwechłowicz M (2019) Application of topology optimization to thighbone and thighbone/implant structure modelling. ARCH CIV MECH ENG 19(4):1006–1019. https://doi.org/10.1016/j.acme.2019.05.007

    Article  Google Scholar 

  75. Marinela Petoa ER-C, C Adriana Hernándezd, Hector R Siller, editor 2019 Structural design optimization of knee replacement implants for Additive Manufacturing. 47th SME North American Manufacturing Research Conference; Penn State Behrend Erie Pennsylvania

  76. Katz JN (1995) Lumbar spinal fusion. Surgical rates, costs, and complications. Spine (Phila Pa 1976) 20(20):78S–83S

    Article  CAS  Google Scholar 

  77. Eck KR, Bridwell KH, Ungacta FF, Lapp MA, Lenke LG, Riew KD (2000) Analysis of titanium mesh cages in adults with minimum two-year follow-up. Spine (Phila Pa 1976) 25(18):2407–2415

    Article  CAS  Google Scholar 

  78. Lonstein JE (2000) Four-year follow-up results of lumbar spine arthrodesis using Bagby and Kuslich lumbar fusion cage. Spine (Phila Pa 1976) 25(20):1506–1508

    Google Scholar 

  79. Mcafee PC (1999) Interbody fusion cages in reconstructive operations on the spine. JBJS 81(6):859–880

    Article  CAS  Google Scholar 

  80. ŽIVČÁK J, H R, SCHNITZER M, KULA T (2018) Numerical simulation and experimental testing of topologically optimized PLA cervical implants made by additive manufacturing methodics. acta mechanica et automatica 12:141–144. https://doi.org/10.2478/ama-2018-0022

    Article  Google Scholar 

  81. Wang H, Wan Y, Liu X, Ren B, Liu Z, Zhang X, Yu M, editors. Macroscopic topology optimization of fusion cages used in TLIF Surgery2019; Singapore: Springer Singapore

  82. Tovar A, Gano SE, Mason JJ (2005) Optimum design of an interbody implant for lumbar spine fixation. Adv Eng Softw 36(9):634–642. https://doi.org/10.1016/j.advengsoft.2005.03.008

    Article  Google Scholar 

  83. Lin HM, Liu C, Pan Y (2014) Biomechanical analysis and design of a dynamic spinal fixator using topology optimization: a finite element analysis. Med Biol Eng Comput 52(5):499–508. https://doi.org/10.1007/s11517-014-1154-x

    Article  PubMed  Google Scholar 

  84. Chen CS, Shih SL (2018) Biomechanical analysis of a new lumbar interspinous device with optimized topology. Med Biol Eng Comput 56(8):1333–1341. https://doi.org/10.1007/s11517-017-1767-y

    Article  PubMed  Google Scholar 

  85. Guo LX, Yin JY (2019) Finite element analysis and design of an interspinous device using topology optimization. Med Biol Eng Comput 57(1):89–98. https://doi.org/10.1007/s11517-018-1838-8

    Article  PubMed  Google Scholar 

  86. Chang CL, Chen CS, Huang C (2012) Finite element analysis of the dental implant using a topology optimization method. Med Eng Phys 34(7):999–1008. https://doi.org/10.1016/j.medengphy.2012.06.004

    Article  PubMed  Google Scholar 

  87. Zhongpu Z, Junning C, Eric L, Wei L, Michael S, Qing L (2016) Topological design of all-ceramic dental bridges for enhancing fracture resistance. INT J NUMER METH BIO 32(6):e02749. https://doi.org/10.1002/cnm.2749

    Article  Google Scholar 

  88. Seitz KF, Grabe J, Kohne T (2018) A three-dimensional topology optimization model for tooth-root morphology. Comput Methods Biomech Biomed Engin 21(2):177–185. https://doi.org/10.1080/10255842.2018.1431778

    Article  PubMed  Google Scholar 

  89. Polgar K, Gill HS, Viceconti M, Murray DW, O'Connor JJ (2003) Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model. Proc Inst Mech Eng H J Eng Med 217(3):173–189. https://doi.org/10.1243/095441103765212677

    Article  CAS  Google Scholar 

  90. Čapek J, Machová M, Fousová M, Kubásek J, Vojtěch D, Fojt J, Jablonská E, Lipov J, Ruml T (2016) Highly porous, low elastic modulus 316 L stainless steel scaffold prepared by selective laser melting. Mater Sci Eng C 69:631–639. https://doi.org/10.1016/j.msec.2016.07.027

    Article  CAS  Google Scholar 

  91. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. JBJS 80(7):985–996

    Article  CAS  Google Scholar 

  92. Cheah C-M, Chua C-K, Leong K-F, Cheong C-H, Naing M-W (2004) Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering. Tissue Eng 10(3-4):595–610. https://doi.org/10.1089/107632704323061951

    Article  PubMed  CAS  Google Scholar 

  93. Dias MR, Guedes JM, Flanagan CL, Hollister SJ, Fernandes PR (2014) Optimization of scaffold design for bone tissue engineering: a computational and experimental study. Med Eng Phys 36(4):448–457. https://doi.org/10.1016/j.medengphy.2014.02.010

    Article  PubMed  Google Scholar 

  94. Fang Z, Starly B, Sun W (2005) Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. COMPUT AIDED DESIGN 37(1):65–72. https://doi.org/10.1016/j.cad.2004.04.002

    Article  Google Scholar 

  95. Giannitelli SM, Accoto D, Trombetta M, Rainer A (2014) Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater 10(2):580–594. https://doi.org/10.1016/j.actbio.2013.10.024

    Article  PubMed  CAS  Google Scholar 

  96. Hollister SJ (2002) An image-based approach fordesigning and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg 29:67–71. https://doi.org/10.1034/j.1399-0020.2000.290115.x

    Article  Google Scholar 

  97. Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103. https://doi.org/10.1016/S0142-9612(02)00148-5

    Article  PubMed  CAS  Google Scholar 

  98. Sun W, Starly B, Darling A, Gomez C (2004) Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. BIOTECHNOL Appl Bioc 39(1):49–58. https://doi.org/10.1042/BA20030109

    Article  CAS  Google Scholar 

  99. Gogarty E, Pasini D. Hierarchical topology optimization for bone tissue scaffold: preliminary results on the design of a fracture fixation plate2015. 311-40 p

  100. Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329. https://doi.org/10.1016/0020-7683(94)90154-6

    Article  Google Scholar 

  101. Jia D, Li F, Zhang C, Liu K, Zhang Y (2019) Design and simulation analysis of lattice bone plate based on finite element method. Mech Adv Mater Struct:1–11. https://doi.org/10.1080/15376494.2019.1665759

  102. Cheng K, Liu Y, Yao C, Zhao W, Xu X (2019) A personalized mandibular implant with supporting and porous structures designed with topology optimization – a case study of canine. Rapid Prototyp J 25(2):417–426. https://doi.org/10.1108/rpj-11-2017-0231

    Article  Google Scholar 

  103. Haden CV, Collins PC, Harlow DGJJ (2015) Yield strength prediction of titanium alloys. JOM 67(6):1357–1361. https://doi.org/10.1007/s11837-015-1436-2

    Article  CAS  Google Scholar 

  104. Hu J, Wang JH, Wang R, Yu XB, Liu Y, Baur DA (2019) Analysis of biomechanical behavior of 3D printed mandibular graft with porous scaffold structure designed by topological optimization. 3D Print Med 5(1):5. https://doi.org/10.1186/s41205-019-0042-2

    Article  PubMed  PubMed Central  Google Scholar 

  105. Arabnejad Khanoki S, Pasini D (2012) Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material. J Biomech Eng 134(3):031004. https://doi.org/10.1115/1.4006115

    Article  PubMed  Google Scholar 

  106. Yuhao He DB, David Durocher, James M. Gilbert, editor 2018 Solid-lattice hip prosthesis design: applying topology optimization to reduce stress shielding from hip implants. Proceedings of the Design of Medical Devices Conference; 2018

  107. Ying Lin C-C, Chen Q (2004) Interbody fusion cage design using integrated global layout and local microstructure topology optimization. Spine (Phila Pa 1976) 29:1747–1754. https://doi.org/10.1097/01.BRS.0000134573.14150.1A

    Article  Google Scholar 

  108. Lin C. Scaffold internal architecture design for porosity and elastic properties by a topology microstructure optimization method. Annual Meeting of Society for Biomaterials Reno, Nevada, May 2, 2003; 20032003

  109. Xu Y, Zhang D, Zhou Y, Wang W, Cao X (2017) Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM). Materials (Basel) 10(9). https://doi.org/10.3390/ma10091048

  110. Hollister S (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater Weinheim 21(32-33):3330–3342. https://doi.org/10.1002/adma.200802977

    Article  CAS  Google Scholar 

  111. Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37(5):623–636. https://doi.org/10.1016/j.jbiomech.2003.09.029

    Article  PubMed  Google Scholar 

  112. Lin CY, Wirtz T, LaMarca F, Hollister SJ (2007) Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J Biomed Mater Res A 83(2):272–279. https://doi.org/10.1002/jbm.a.31231

    Article  PubMed  CAS  Google Scholar 

  113. CL SJH, Saito E (2005) Engineering craniofacial scaffolds. ORTHOD CRANIOFAC RES 8:162–173. https://doi.org/10.1111/j.1601-6343.2005.00329.x

    Article  Google Scholar 

  114. Fernandes P, Guedes JM, Rodrigues H (1999) Topology optimization of three-dimensional linear elastic structures with a constraint on “perimeter”. Comput Struct 73(6):583–594. https://doi.org/10.1016/S0045-7949(98)00312-5

    Article  Google Scholar 

  115. Sigmund O (1994) Design of material structures using topology optimization

  116. Kang H, Hollister SJ, La Marca F (2013) Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering. J Biomech Eng 135(10):101013–101018. https://doi.org/10.1115/1.4025102

    Article  PubMed  Google Scholar 

  117. Ying L, Chengyu L, Scott JH (2013) A new approach for designing biodegradable bone tissue augmentation devices by using degradation topology optimization. Journal of Systemics Cybernetics & Informatics 11

  118. Braune S, Lendlein A, Jung F 2018 3 - Developing standards and test protocols for testing the hemocompatibility of biomaterials A2 - Siedlecki, Christopher A. Hemocompatibility of Biomaterials for Clinical Applications: Woodhead Publishing. p. 51-76

  119. Knutsen AR, Borkowski SL, Ebramzadeh E, Flanagan CL, Hollister SJ, Sangiorgio SN (2015) Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices. J Mech Behav Biomed Mater 49:332–342. https://doi.org/10.1016/j.jmbbm.2015.05.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Liu YJ, Ren DC, Li SJ, Wang H, Zhang LC, Sercombe TB (2020) Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting. Additive Manufacturing 32:101060. https://doi.org/10.1016/j.addma.2020.101060

    Article  CAS  Google Scholar 

  121. Ahsan AMMN, Xie R, Khoda B, editors 2017 Direct bio-printing with heterogeneous topology design. 45th SME North American Manufacturing Research Conference

  122. Kang H, Long JP, Urbiel Goldner GD, Goldstein SA, Hollister SJ (2012) A paradigm for the development and evaluation of novel implant topologies for bone fixation: implant design and fabrication. J Biomech 45(13):2241–2247. https://doi.org/10.1016/j.jbiomech.2012.06.011

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by (1) the National Natural Science Foundation of China (grant numbers 82072456&81802174), (2) the National Key R&D Program of China (No. 2018YFB1105100), (3) the Department of Science and Technology of Jilin Province, P.R.C. (grant numbers 20200404202YY&20200403086SF&20200201453JC), (4) the Department of finance in Jilin province (grant number2019SCZT046&2020SCZT037&201817294302), (5) the Undergraduate teaching reform research project of Jilin University (grant number 4Z2000610852), (6) the Key training plan for outstanding young teachers of Jilin University (grant number 419080520253), (7) the Bethune plan of Jilin University (grant number 470110000692), and (8) the Jilin Province Development and Reform Commission, P.R.C. (grant numbers 2018C010).

Author information

Authors and Affiliations

Authors

Contributions

The idea was come up with Jincheng Wang and Qing Han. The first draft of the manuscript was written by Naichao Wu. The literature search was performed by Shan Li and Boyan Zhang. This review was revised by Qing Han, Chenyu Wang, and Bingpeng Chen. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Qing Han or Jincheng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Li, S., Zhang, B. et al. The advances of topology optimization techniques in orthopedic implants: A review. Med Biol Eng Comput 59, 1673–1689 (2021). https://doi.org/10.1007/s11517-021-02361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02361-7

Keywords