Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Effect of ureteral stent length and implantation position on migration after implantation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Background

Ureteral obstruction is a urinary system disease that causes urinary retention, renal injury, renal colic, and infection. Ureteral stents are often used for conservative treatment in clinics, and their migration usually results in ureteral stent failure. The migrations include proximal migration to the kidney side and distal migration to the bladder side, but the biomechanism of stent migration is still unknown.

Method

Finite element models of stents with lengths from 6–30 cm were developed. The stents were implanted into the middle of the ureter to analyze the effect of stent length on its migration, and the effect of stent implantation position on 6-cm-long stent migration was also observed. The stents’ maximum axial displacement was used to assess the ease of stent migration. A time-varying pressure was applied to the ureter outer wall to simulate peristalsis. The stent and ureter adopted friction contact conditions. The two ends of the ureter were fixed. The radial displacement of the ureter was used to evaluate the effect of the stent on peristalsis.

Results and discussion

The maximum migration occurs in the positive direction for a 6-cm-long stent implanted at the proximal ureter (CD and DE), but in the negative direction at the distal ureter (FG and GH). The 6-cm-long stent demonstrated almost no effect on ureteral peristalsis. The 12-cm-long stent diminished the radial displacement of the ureter from 3–5 s. The 18-cm stent diminished the radial displacement of the ureter from 0–8 s, and the radial displacement within 2–6 s was weaker than other time. The 24-cm stent diminished the radial displacement of the ureter from 0–8 s, and the radial displacement within 1–7 s was weaker than other time.

Conclusion

The biomechanism of stent migration and ureteral peristalsis weakening after stent implantation was explored. Shorter stents were more likely to migrate. The implantation position had less influence on ureteral peristalsis compared with the stent length, which provided a reference for stent design aimed at reducing stent migration. Stent length was the main factor affecting ureteral peristalsis. This study provides a reference for the study of ureteral peristalsis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Keni SSL, Kalburgi S, Zuber M, Hammed Z, Tamagawa M (2019) Finite element analysis of urinary bladder wall thickness at different pressure condition. J Mech Med Biol 19:1950029. https://doi.org/10.1142/S0219519419500295

    Article  Google Scholar 

  2. Barzegari M, Vahidi B, Safarinejad MR, Ebad M (2020) A computational analysis of the effect of supporting organs on predicted vesical pressure in stress urinary incontinence. Med Biol Eng Comput 58:1079–1089. https://doi.org/10.1007/s11517-020-02148-2

    Article  PubMed  Google Scholar 

  3. Sokolis DP (2020) Alterations with age in the biomechanical behavior of human ureteral wall: Microstructure-based modeling. J Biomech 109:109940. https://doi.org/10.1016/j.jbiomech.2020.109940

    Article  PubMed  Google Scholar 

  4. Smita K, Sushil KV, Premendran J, Sharma ML (2006) Goat ureter-an alternative model for measuring ureteral peristalsis. J Smooth Muscle Res 44:117–130. https://doi.org/10.1540/jsmr.42.117

    Article  Google Scholar 

  5. Celik S, Acar T, Simsek C, Yesilova A, Tatar E, Bozkurt IH, Topcu YK, Sefik E, Basmati I, Gunlusoy B, Degirmenci T, Uslu A (2020) The course of alterations in ureteral jet dynamics following kidney transplantation: a prospective observational cohort study. Rev Assoc Med Bras 66:153–159. https://doi.org/10.1590/1806-9282.66.2.153

    Article  PubMed  Google Scholar 

  6. Keni LG, Hayoz MJ, Khader SMA, Hegde P, Prakashini K, Tamagawa M, Shenoy BS, Hameed BMZ, Zuber M (2021) Computational flow analysis of a single peristaltic wave propagation in the ureter. Comput Meth Prog Bio 210:106378. https://doi.org/10.1016/j.cmpb.2021.106378

    Article  Google Scholar 

  7. Takaddus AT, Chandy AJ (2018) A two way fully coupled fluid structure simulation of human ureter peristalsis. Comput Methods in Biomech Biomed Engin 21(14):750–759. https://doi.org/10.1080/10255842.2018.1516764

    Article  Google Scholar 

  8. Griffiths DJ (1987) Dynamics of the upper urinary tract: I. Peristaltic flow through a distensible tube of limited length. Phys Med Biol 32:813–822. https://doi.org/10.1088/0031-9155/32/7/002

    Article  CAS  PubMed  Google Scholar 

  9. Takaddus AT, Gautam P, Chandy AJ (2016) Numerical simulations of peristalsis in unobstructed human ureters. IMECE V003T04A024. https://doi.org/10.1115/IMECE2016-65999

  10. Vahidi B, Fatouraee N (2012) A biomechanical simulation of ureteral flow during peristalsis using intraluminal morphometric data. J Theor Biol 298:42–50. https://doi.org/10.1016/j.jtbi.2011.12.019

    Article  PubMed  Google Scholar 

  11. Sokolis DP (2019) In vitro study of age-related changes in human ureteral failure properties according to region, direction, and layer. P I Mech Eng H 233:570–583. https://doi.org/10.1177/0954411919839891

    Article  Google Scholar 

  12. Mao C, Peng C, Li S, Chen LL, You MJ, Fang KW, Xiang ST, Su YS (2021) Quantitative evaluation of upper urinary tract pump function in pigs with acute unilateral lower ureteral obstruction by 640-slice dynamic volume CT. BMC Urol 21:118. https://doi.org/10.1186/s12894-021-00887-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yin FC, Fung YC (1971) Mechanical properties of isolated mammalian ureteral segments. Am J Physiol -Legacy Content 221:1484–1493. https://doi.org/10.1152/ajplegacy.1971.221.5.1484

    Article  CAS  Google Scholar 

  14. Gregersen IHH (1999) Morphometry and residual strain in porcine ureter. Scand J Urol Nephrol 33:10–16. https://doi.org/10.1080/003655999750016203

    Article  PubMed  Google Scholar 

  15. Sokolis DP (2012) Multiaxial mechanical behaviour of the passive ureteral wall: experimental study and mathematical characterization. Comput Method Biomec 15:1145–1156. https://doi.org/10.1080/10255842.2011.581237

    Article  Google Scholar 

  16. Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol Heart Circ Physiol 237:H620–H631. https://doi.org/10.1152/ajpheart.1979.237.5.H620

    Article  CAS  Google Scholar 

  17. Rassoli A, Shafigh M, Seddighi A, Seddighi A, Daneshparvar H, Fatouraee N (2014) Biaxial mechanical properties of human ureter under tension. Urol J 11(3):1678–1686. https://doi.org/10.22037/uj.v11i3.2472

    Article  PubMed  Google Scholar 

  18. Sokolis DP, Petsepe DC, Papadodima SA, Kourkoulis SK (2017) Age-and region-related changes in the biomechanical properties and composition of the human ureter. J Biomech 51:57–64. https://doi.org/10.1016/j.jbiomech.2016.11.067

    Article  PubMed  Google Scholar 

  19. Petsepe DC, Kourkoulis SK, Papadodima SA, Sokolis DP (2018) Regional and age-dependent residual strains, curvature, and dimensions of the human ureter. P I Mech Eng H 232:149–162. https://doi.org/10.1177/0954411917750192

    Article  Google Scholar 

  20. Corrales M, Doizi S, Barghouthy Y, Kamkoum H, Somani B, Traxer O (2021) A systematic review of long-duration stents for ureteral stricture: which one to choose? World J Urol 39:3179–3205. https://doi.org/10.1007/s00345-020-03544-x

    Article  Google Scholar 

  21. Shilo Y, Modai J, Leibovici D, Dror I, Berkowitz B (2021) Comparative study of renal drainage with different ureteral stents subject to extrinsic ureteral obstruction using an in vitro ureter-stent model. BMC urol 21. https://doi.org/10.1186/s12894-021-00865-w

  22. Haifler M, Kleinmann N, Weiss D (2021) Tandem ureteral stents drainage lowers renal pelvis pressure in malignant ureteral obstruction: Experimental and computational models. J Biomech 117:110237. https://doi.org/10.1016/j.jbiomech.2021.110237

    Article  PubMed  Google Scholar 

  23. Sali GM, Joshi HB (2020) Ureteric stents: overview of current clinical applications and economic implications. Int J Urol 27:7–15. https://doi.org/10.1111/iju.14119

    Article  PubMed  Google Scholar 

  24. Clarke DL (2021) Medical and surgical management of ureteral obstructions. Advances in Small Animal Care 2:85–100. https://doi.org/10.1016/j.yasa.2021.07.009

    Article  Google Scholar 

  25. Gao X, Song T, Peng L, Yuan C, Wang W, Chen J, Xiao K (2021) Self-expanding metal ureteral stent for ureteral stricture: Experience of a large-scale prospective study from a high-volume center-Cross-sectional study. Int J Surg 95:106161. https://doi.org/10.1016/j.ijsu.2021.106161

    Article  PubMed  Google Scholar 

  26. Ziauddin SAM, Devana SK, Sharma A, Chaudhary K (2021) Submucosal impaction of a forgotten DJ stent: addressing the unexpected. BMJ Case Rep CP 14:e243580. https://doi.org/10.1136/bcr-2021-243580

    Article  Google Scholar 

  27. Vogt B, Blanchet LH (2021) 10-year experience with reinforced ureteral stents for malignant ureteral obstruction. Res Rep Urol 13:581–589. https://doi.org/10.2147/RRU.S326274

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kang Q, Jiang F, Yu Y, Yang B (2020) Application of metallic ureteral stents in gynecological malignancies: a literature review. Minim Invasiv Ther 29. https://doi.org/10.1080/13645706.2019.1572626

  29. Liu KL, Lee BC, Ye JD, Chang YH, Chang CC, Huang KH, Lee YJ, Chang YC (2019) Comparison of single and tandem ureteral stenting for malignant ureteral obstruction: a prospective study of 104 patients. Eur Radiol 29:628–635. https://doi.org/10.1007/s00330-018-5560-6

    Article  PubMed  Google Scholar 

  30. Ramachandra M, Mosayyebi A, Carugo D, Somani BK (2020) Strategies to improve patient outcomes and QOL: Current complications of the iesign and placements of ureteric stents. Urol Res Rep 12:303–314. https://doi.org/10.2147/RRU.S233981

    Article  Google Scholar 

  31. Yousefi MR, Shalabi N, Lange D, Chew BH, Takahata K (2021) Intelligent ureteral stent for early detection of hydronephrosis. Adv Mater Technol 6:2100652. https://doi.org/10.1002/admt.202100652

    Article  Google Scholar 

  32. Toprak T, Şahin A, Kutluhan MA, Akgul K, Danacıoğlu YO, Ramazanoğlu MA, Verit A (2019) Does duration of stenting increase the risk of clinical infection? Arch Ital Urol Androl 91:237–240. https://doi.org/10.4081/aiua.2019.4.237

    Article  Google Scholar 

  33. Ramachandra M, Mosayyebi A, Carugo D, Somani BK (2020) Strategies to improve patient outcomes and qol: Current complications of the design and placements of ureteric stents. Urol Res Rep 12:303–314. https://doi.org/10.2147/RRU.S233981

    Article  Google Scholar 

  34. Tlili G, Ammar H, Dziri S, Ahmed KB, Farhat W, Arem S, Acacha E, Gupta R, Rguez A, Jaidan M (2021) Antegrade double-J stent placement for the treatment of malignant obstructive uropathy: A retrospective cohort study. Ann Med Surg 69:102726. https://doi.org/10.1016/j.amsu.2021.102726

    Article  Google Scholar 

  35. Matsuura H, Arase S, Hori Y (2019) Ureteral stents for malignant extrinsic ureteral obstruction: Outcomes and factors predicting stent failure. Int J Clin Oncol 24:306–312. https://doi.org/10.1007/s10147-018-1348-6

    Article  CAS  PubMed  Google Scholar 

  36. Izumi K, Shima T, Shigehara K, Sawada K, Naito R, Kato Y, Ofude M, Kano H, Iwamoto H, Yaegashi H, Nakashima K, Iijima M, Kawaguchi S, Nohara T, Kadono Y, Mizokami A (2021) A novel risk classification score for malignant ureteral obstruction: a multicenter prospective validation study. Sci Rep 11:1–9. https://doi.org/10.1038/s41598-021-84054-7

    Article  CAS  Google Scholar 

  37. Wu KJ, Chen YZ, Chen M, Chen YH (2021) Clinical factors predicting ureteral stent failure in patients with external ureteral compression. Open Med 16:1299–1305. https://doi.org/10.1515/med-2021-0345

    Article  Google Scholar 

  38. Kobayashi Y, Arai H, Honda M (2021) Patency period of a metallic ureteral stent and its determinants in patients with malignant ureteral obstruction: a prospective review. Afri J Urol 27. https://doi.org/10.1186/s12301-021-00229-8

  39. Ando T, Kazama A (2021) Double J stent migration as renal penetration. Urol Res Rep 39:101759. https://doi.org/10.1016/j.eucr.2021.101759

    Article  Google Scholar 

  40. Pérez-Bertólez S, Alonso V (2021) Removal of an intra-renal migrated ureteral stent through a percutaneous nephroscopy in a 2-year-old child. Urol Res Rep 34:101482. https://doi.org/10.1016/j.eucr.2020.101482

    Article  Google Scholar 

  41. Marques V, Parada B, Rolo F, Figueiredo A (2018) Intracaval misplacement of a double-J ureteral stent. BMJ Case Rep CP 2018: bcr-2017–221713. https://doi.org/10.1136/bcr-2017-221713

  42. Elsamra SE, Leavitt DA, Motato HA, Friedlander JI, Siev M, Keheila M, Hoenig DM, Smith AD, Okeke Z (2015) Stenting for malignant ureteral obstruction: Tandem, metal or metal-mesh stents. Int J Urol 22:629–636. https://doi.org/10.1111/iju.12795

    Article  PubMed  Google Scholar 

  43. Miller GA, Preddie DC, Savransky Y, Spergel LM (2018) Use of the Viabahn stent graft for the treatment of recurrent cephalic arch stenosis in hemodialysis accesses. J Vasc Surg 67(2):522–528. https://doi.org/10.1016/j.jvs.2017.08.018

    Article  PubMed  Google Scholar 

  44. Ghimire S, Ravi SJ, Yousef M, Khan H (2021) Proximal migration of pancreatic duct stent in pancreas divisum: Challenges in retrieval and review of the literature. Case Rep Gastrointest Med 2021:5531658. https://doi.org/10.1155/2021/5531658

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ferm S, Fisher C, Hassam A, Rubin M, Kim SH (2018) Hussain SA (2018) Primary endoscopic closure of duodenal perforation secondary to biliary stent migration: A case report and review of the literature. J Invest Med High Im 6:1–3. https://doi.org/10.1177/2324709618792031

    Article  Google Scholar 

  46. Khoo CC, Abboudi H, Cartwright R, El-Husseiny T, Dasgupta R (2018) Metallic ureteric stents in malignant ureteric obstruction: A systematic review. Urol 118:12–20. https://doi.org/10.1016/j.urology.2018.01.019

    Article  PubMed  Google Scholar 

  47. Hsu JT, Tseng JS, Chen M, Sun FJ, Chen CW, Lin WR, Chiang PK, Chiu AW (2021) Preoperative estimate of natural ureteral length based on computed tomography and/or plain radiography. Sci Rep 11. https://doi.org/10.1038/s41598-021-91658-6

  48. Camtosun A, Bicer S (2020) The impact of Double J stent on the quality of sexual life and job performance. Clin Exp Obstet Gynecol 47:199–201. https://doi.org/10.31083/j.ceog.2020.02.5064

    Article  Google Scholar 

  49. Nestler S, Witte B, Schilchegger L, Jones J (2020) Size does matter: ureteral stents with a smaller diameter show advantages regarding urinary symptoms, pain levels and general health. World J Urol 38:1059–1063. https://doi.org/10.1007/s00345-019-02829-0

    Article  PubMed  Google Scholar 

  50. Tabib C, Nethala D, Kozel Z (2020) Management and treatment options when facing malignant ureteral obstruction. Int J Urol 27:591–598. https://doi.org/10.1111/iju.14235

    Article  PubMed  Google Scholar 

  51. Tilborghs S, Vaganée D, Wachter SD, Hoekx L (2019) Intravascular Double J stent migration: A case report, review, and management algorithm. Urol Ann 11:93–97. https://doi.org/10.4103/UA.UA_52_18

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gómez-Blanco JC, Martínez-Reina FJ, Cruz D, Pagador JB, Sánchez-Margallo FM, Soria F (2016) Fluid structural analysis of urine flow in a stented ureter. Comput Math Method M 2016:5710798. https://doi.org/10.1155/2016/5710798

    Article  Google Scholar 

  53. Shi W, Li H, Mitchell K, Zhang C, Zhu T, Jin Y, Zhao D (2021) A multi-dimensional non-uniform corrosion model for bioabsorbable metallic vascular stents. Acta Biomater 131:572–580. https://doi.org/10.1016/j.actbio.2021.07.008

    Article  CAS  PubMed  Google Scholar 

  54. Kim KW, Kim HH, Choi YH, Lee SB, Baba Y, Suh SH (2020) Arrangement of side holes in a double J stent for high urine flow in a stented ureter. J Mech Sci Technol 34:949–954. https://doi.org/10.1007/s12206-020-0144-1

    Article  Google Scholar 

  55. Zheng S, Carugo D, Mosayyebi A, Turney B, Burkhard F, Lange D, Clavica F (2021) Fluid mechanical modeling of the upper urinary tract. WIREs Mech Dis e01523. https://doi.org/10.1002/wsbm.1523

  56. Shilo Y, Modai J, Leibovici D, Dror I, Berkowitz B (2020) The impact of ureteral deformation and external ureteral pressure on stent failure in extrinsic ureteral obstruction: An in vitro experimental study. J Endourol 34:68–73. https://doi.org/10.1089/end.2019.0465

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12172034, U20A20390, 11827803), Beijing Municipal Natural Science Foundation (7212205), the 111 project (B13003) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhen Wang.

Ethics declarations

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wang, L., Gao, Y. et al. Effect of ureteral stent length and implantation position on migration after implantation. Med Biol Eng Comput 61, 2067–2076 (2023). https://doi.org/10.1007/s11517-023-02856-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02856-5

Keywords