Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Correction of images in an open-configuration MR imaging system for radiation therapy planning and Interventional MRI

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

In this paper, we present a method to remove system induced geometric distortions in MR images.

Methods

A large 3D phantom with spherical balls was used to characterize geometric distortion on an AIRIS Mate 0.2 T MR Scanner (Hitachi). MR images of the phantom were acquired in axial, sagittal planes. Using 2D Fast Spin Echo (FSE) sequence, distortions were measured at each control point. Two piecewise interpolation methods were then applied to correct distortions and greyvalues.

Results

The distortion was reduced from 16 to 1.2 mm at 180 mm from the magnet center.

Conclusion

Distortions were characterized and corrected in any axial, sagittal or coronal slice within an effective FOV of 330(LR) × 180(AP) × 210(HF) mm3. A fast and accurate method for correction of geometric distortion was performed within large distances from the magnet isocenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Fransson A, Andreo P, Potter R (2001) Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther onkol 177(2): 59–73

    Article  PubMed  CAS  Google Scholar 

  2. Mah D, Steckner M, Palacio E, Mitra R, Richardson T, Hanks GE (2002) Characteristics and quality assurance of a dedicated open 0.23 T MRI for radiation therapy simulation. Med Phys 29(11): 2541–2547

    Article  PubMed  Google Scholar 

  3. Krempien RC, Schubert K, Zierhut D, Steckner MC, Treiber M, Harms W, Mende U, Latz D, Wannenmacher M, Wenz F (2002) Open low-field magnetic resonance imaging in radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 53(5): 1350–1360

    Article  PubMed  Google Scholar 

  4. Jackson ASN, Reinsberg SA, Sohaib SA, Charles-Edwards EM, Mangar SA, South CP, Leach MO, Dearnaley DP (2007) Distortion-corrected t2 weighted MRI: a novel approach to prostate radiotherapy planning. Br J Radiol 80(959): 926

    Article  PubMed  CAS  Google Scholar 

  5. Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N (2007) Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68(2): 592–600

    PubMed  Google Scholar 

  6. Blanco RT, Ojala R, Kariniemi J, Perala J, Niinimaki J, Tervonen O (2005) Interventional and intraoperative MRI at low field scanner—a review. Eur J Radiol 56(2): 130–142

    Article  PubMed  Google Scholar 

  7. Elgort DR, Duerk JL (2005) A review of technical advances in interventional magnetic resonance imaging. Acad Radiol 12(9): 1089–1099

    Article  PubMed  Google Scholar 

  8. Sequeiros RB, Ojala R, Kariniemi J, Perala J, Niinimaki J, Reinikainen H, Tervonen O (2005) MR-guided interventional procedures: a review. Acta Radiol 46(6): 576–586

    Article  PubMed  Google Scholar 

  9. Viard R, Rousseau J (2008) Imagerie interventionnelle par résonance magnétique: Etat de l’art des développements techniques. J de Radiol 89: 13–20

    Article  CAS  Google Scholar 

  10. Viard R, Betrouni N, Rousseau J, Mordon S, Ernst O, Maouche S (2007) Needle positioning in interventional MRI procedure: real time optical localisation and accordance with the roadmap. Conf Proc IEEE Eng Med Biol Soc 2748–2751. doi:10.1109/IEMBS.2007.4352897

  11. Michiels J, Bosmans H, Pelgrims P, Vandermeulen D, Gybels J, Marchal G, Suetens P (1994) On the problem of geometric distortion in magnetic resonance images for stereotactic neurosurgery. Magn Reson Imaging 12(5): 749–765

    Article  PubMed  CAS  Google Scholar 

  12. Daanen V, Coste E, Sergent G, Godart F, Vasseur C, Rousseau J (2000) Accurate localization of needle entry point in interventional MRI. J Magn Reson Imaging 12(4): 645–649

    Article  PubMed  CAS  Google Scholar 

  13. Breeuwer M, Holden M, Zylka W (2001) Detection and correction of geometric distortion in 3D MR images. Proc SPIE 4322: 1110–1120

    Article  Google Scholar 

  14. Petersch B, Bogner J, Fransson A, Lorang T, Potter R (2004) Effects of geometric distortion in 0.2 T MRI on radiotherapy treatment planning of prostate cancer. Radiother Oncol 71(1): 55–64

    Article  PubMed  Google Scholar 

  15. Wang D, Doddrell DM (2005) Geometric distortion in structural magnetic resonance imaging current. Med Imaging Rev 1(1): 49–60

    Article  Google Scholar 

  16. Chen Z, Ma CM, Paskalev K, Li J, Yang J, Richardson T, Palacio L, Xu X, Chen L (2006) Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer. Phys Med Biol 51(6): 1393–1403

    Article  PubMed  CAS  Google Scholar 

  17. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11: 285–296

    Article  Google Scholar 

  18. Chen T, Wu QH, Rahmani-Torkaman R, Hughes J (2002) A pseudo top-hat mathematical morphological approach to edge detection in dark regions. Pattern Recognition. 35(1): 199–210. doi:10.1016/S0031-3203(01)00024-3

    Article  Google Scholar 

  19. Besl PJ, McKay ND (1992) a method for registration of 3D shapes. IEEE Trans Pattern Anal Mach Intell 14(2): 239–256

    Article  Google Scholar 

  20. Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38: 181–200

    Article  Google Scholar 

  21. De Boor C (1979) Efficient computer manipulation of tensor products. ACM Trans Math Softw (toms) 5(2): 173–182

    Article  Google Scholar 

  22. Keys R (1981) Cubic convolution interpolation for digital image processing. Acoustics, Speech, and Signal Processing [see also ieee transactions on signal processing]. IEEE Trans 29(6): 1153–1160

    Google Scholar 

  23. Doran SJ, Charles-Edwards L, Reinsberg SA, Leach MO (2005) A complete distortion correction for MR images: I Gradient warp correction. Phys Med Biol 50(7): 1343–1361

    Article  PubMed  Google Scholar 

  24. Wang D, Doddrell DM, Cowin G (2004) A novel phantom and method for comprehensive 3Dimensional measurement and correction of geometric distortion in magnetic resonance imaging. Magn Reson Imaging 22(4): 529–542

    Article  PubMed  Google Scholar 

  25. Fritsch FN, Butland J (1984) A method for constructing local monotone piecewise cubic interpolants. SIAM J Sci Stat Comput 5: 300–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Viard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viard, R., Mordon, S., Betrouni, N. et al. Correction of images in an open-configuration MR imaging system for radiation therapy planning and Interventional MRI. Int J CARS 3, 283–289 (2008). https://doi.org/10.1007/s11548-008-0224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0224-7

Keywords