Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic segmentation of calcified plaques and vessel borders in IVUS images

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

Intravascular ultrasound (IVUS) is a diagnostic imaging technique for tomographic visualization of coronary arteries. Automatic analysis of IVUS images is difficult due to speckle noise, artifacts of the catheter, and shadows generated by calcifications. We designed and implemented a system for automated segmentation of coronary artery IVUS images.

Methods

Two methods for automatic detection of the intima and the media-adventitia borders in IVUS coronary artery images were developed and compared. The first method uses the parametric deformable models, while the second method is based on the geometric deformable models. The initial locations of the borders are approximated using two different edge detection methods. The final borders are then defined using the two deformable models. Finally, the calcified regions between the extracted borders are identified using a Bayesian classifier. The performance of the proposed methods was evaluated using 60 different IVUS images obtained from 7 patients.

Results

Segmented images were compared with manually outlined contours. We compared the performance of calcified region characterization methods using ROC analysis and by computing the sensitivity and specificity of the Bayesian classifier, thresholding, adaptive thresholding, and textural features. The Bayesian method performed best.

Conclusion

The results shows that the geometric deformable model outperforms the parametric deformable model for automated segmentation of IVUS coronary artery images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostoni P, Schaar JA (2004) The challenge of vulnerable plaque detection in the cardiac catheterization laboratory. J Kardiovaskulare Med 7:349–358

    Google Scholar 

  2. Brunenberg EJL (2005) Automatic IVUS segmentation using feature extraction and snakes Internship report. Dept of Biomedical Engineering, Eindhoven University of Technology, The Netherlands

    Google Scholar 

  3. Caselles V, Kimmel R, Sapiro G (1997) geodesic active contours. Int J Comput Vis 22(1): 61–79 doi:10.1023/A:1007979827043

    Article  Google Scholar 

  4. Chalana V, Kim Y (1997) A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans Med Imaging 16: 642–652 doi:10.1109/42.640755

    Article  PubMed  CAS  Google Scholar 

  5. dos Filho E, Yoshizawa M (2004) A study on intravascular ultrasound image processing. J Math Imaging Vis 21: 205–223 doi:10.1023/B:JMIV.0000043737.96390.dc

    Article  Google Scholar 

  6. Fu S, Ruan Q,Wang W, Li Y (2004) Feature preserving nonlinear diffusion for ultrasonic image denoising and edge enhancement. Trans Eng Comput Technol 2:1305–5313

    Google Scholar 

  7. Gil D, Radeva P, Saludes J (2000) Segmentation of artery wall in coronary IVUS Images: a probabilistic approach. Comput Cardiol 4: 352–355

    Google Scholar 

  8. Gil D, Hernandez A, Carol A, Rodriguez O, Radeva P (2005) A deterministic-statistic adventitia detection in IVUS images. Funct Imaging Model Heart 3504:65–74

    Google Scholar 

  9. Gil D, Hernandez A, Rodriguez O, Maura J, Radeva P (2006) statistical strategy for anisotropic adventitia modeling in IVUS. IEEE Trans Med Imaging 25(6): 768–777 doi:10.1109/TMI.2006.874962

    Article  PubMed  Google Scholar 

  10. Han X, Chenyang X, Prince JL (2003) A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25(6): 755–768

    Article  Google Scholar 

  11. Han X, Xu C, Prince JL (2001) A topology preserving deformal model using level sets, cvpr, p. 765, 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’01), vol 2

  12. Kass M, Witkin A, Terzopoulos D (1987) Snakes: active contour models. Int J Comput Vis 1(4): 321–331 doi:10.1007/BF00133570

    Article  Google Scholar 

  13. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33: 159–174 doi:10.2307/2529310

    Article  PubMed  CAS  Google Scholar 

  14. Lean CCH, Alex KB (2006) An enhanced method for the snake algorithm. Int Conf Innov Comput Inf Control (ICICIC’06) 18:249–258

    Google Scholar 

  15. Luo Z,WangY,WangW (2003) Estimating coronary artery lumen area with optimization-based contour detection. IEEE Trans Med Imaging 22(4):48–56

    Google Scholar 

  16. Michailovich OV, Tannenbaum A (2006) Despeckling of medical ultrasound images. IEEE transactions on ultrasonics, ferroelectrics and frequency control 53(1): 64–48 doi:10.1109/TUFFC.2006.1588392

    Article  Google Scholar 

  17. Nissen SE, Yock P (2001) Intravascular ultrasound clinical application. Am Heart Assoc conf 62:230–242

    Google Scholar 

  18. Papadogiorgaki M, Mezaris V, Chatzizisis YS, Kompatsiaris I, Giannoglou GD (2006) A fully automated texture-based approach for the segmentation of sequential IVUS images. Int Conf Syst Signals Image Process 8(2):461–164

    Google Scholar 

  19. Suri JS, Liu K, Singh S, Laxminarayan SN, Zeng X, Reden L (2002) Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans Inf Technol Biomed 6(1): 8–28 doi:10.1109/4233.992158

    Article  PubMed  Google Scholar 

  20. Vince DG, Dixon KJ, Cothren RM, Cornhill JF (2000) Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images. Comput Med Imaging Graph 24: 221–229 doi:10.1016/S0895-6111(00)00011-2

    Article  PubMed  CAS  Google Scholar 

  21. Wang H, Ghosh B (2000) Geometric active deformable models in shape modeling. IEEE Trans Image Proc 9(2):302–318

    Article  CAS  Google Scholar 

  22. Williams GW (1976) Comparing the joint agreement of several raters with another rater. Biometrics 32: 619–627 doi:10.2307/2529750

    Article  PubMed  CAS  Google Scholar 

  23. Zhang X, McKay ChR, Sonka M (1998) Tissue characterization in intravascular ultrasound images. IEEE Trans Med Imaging 17(6): 889–899 doi:10.1109/42.746622

    Article  PubMed  CAS  Google Scholar 

  24. Zhu H, Liang Y, Friedman MH (2002) IVUS image segmentation based on contrast. In: Processing of SPIE, Durham, NC, USA. pp 1727–1733. Medical Imaging conference, 4684:1727–1733

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Taki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taki, A., Najafi, Z., Roodaki, A. et al. Automatic segmentation of calcified plaques and vessel borders in IVUS images. Int J CARS 3, 347–354 (2008). https://doi.org/10.1007/s11548-008-0235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0235-4

Keywords