Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Statistical shape and texture model of quadrature phase information for prostate segmentation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Prostate volume estimation from segmentation of transrectal ultrasound (TRUS) images aids in diagnosis and treatment of prostate hypertrophy and cancer. Computer-aided accurate and computationally efficient prostate segmentation in TRUS images is a challenging task, owing to low signal-to-noise ratio, speckle noise, calcifications, and heterogeneous intensity distribution in the prostate region.

Method

A multi-resolution framework using texture features in a parametric deformable statistical model of shape and appearance was developed to segment the prostate. Local phase information of log-Gabor quadrature filter extracted texture of the prostate region in TRUS images. Large bandwidth of log-Gabor filter ensures easy estimation of local orientations, and zero response for a constant signal provides invariance to gray level shift. This aids in enhanced representation of the underlying texture information of the prostate unaffected by speckle noise and imaging artifacts. The parametric model of the propagating contour is derived from principal component analysis of prior shape and texture information of the prostate from the training data. The parameters were modified using prior knowledge of the optimization space to achieve segmentation.

Results

The proposed method achieves a mean Dice similarity coefficient value of 0.95 ± 0.02 and mean absolute distance of 1.26 ± 0.51 millimeter when validated with 24 TRUS images of 6 data sets in a leave-one-patient-out validation framework.

Conclusions

The proposed method for prostate TRUS image segmentation is computationally efficient and provides accurate prostate segmentations in the presence of intensity heterogeneities and imaging artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prostate cancer statistics—key facts (2009) http://info.cancerresearchuk.org/cancerstats/types/prostate

  2. Aach T, Kaup A, Mester R (1995) On texture local energy transform versus quadrature filters. Signal Process 45: 173–181

    Article  Google Scholar 

  3. Abolmaesumi P, Sirouspour M (2004) Segmentation of prostate contours from ultrasound images. IEEE Int Conf Acoust Speech Signal Process 3: 517–520

    Google Scholar 

  4. Andersson M, Knutsson H (2010) Adaptive filtering, http://www.imt.liu.se/edu/courses/TBMI02

  5. Badiei S, Salcudean SE, Varah J, Morris WJ (2006) Prostate segmentation in 2D ultrasound images using image warping and ellipse fitting. In: Book Series Lecture Notes in Computer Science, Medical image computing and computer-assisted intervention (MICCAI), vol 4191. Springer, pp 17–24

  6. Belogay E, Cabrelli C, Molter U, Shonkwiler R (1997) Calculating the hausdorff distance between curves. Inf Process Lett 64: 17–22

    Article  Google Scholar 

  7. Betrouni N, Vermandel M, Pasquier D, Maouche S, Rousseau J (2005) Segmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filter. Comput Med Imaging Graph 29: 43–51

    Article  PubMed  Google Scholar 

  8. Boukerroui D, Noble JA, Brady M (2004) On the choice of band-pass quadrature filters. J Math Imaging Vis 21: 23–80

    Article  Google Scholar 

  9. Cootes T, Edwards G, Taylor C (1998) Active appearance models. In: Book Series Lecture Notes in Computer Science, vol 1407. Springer, pp 484–498

  10. Cootes TF, Hill A, Taylor CJ, Haslam J (1994) The use of active shape model for locating structures in medical images. Image Vis Comput 12: 355–366

    Article  Google Scholar 

  11. Cosío FA (2008) Automatic initialization of an active shape model of the prostate. Med Image Anal 12: 469–483

    Article  PubMed  Google Scholar 

  12. Diaz K, Castaneda B (2008) Semi-automated segmentation of the prostate gland boundary in ultrasound images using a machine learning approach. Proc SPIE Med Imaging Image Process 6914: 69,144A.1–69,144A.8

    Google Scholar 

  13. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26: 297–302

    Article  Google Scholar 

  14. Felsberg M, Sommer G (2000) The multidimensional isotropic generalisation of quadrature filters in geometric algebra. In: Proceedings of international workshop on algebraic frames for the perception-action cycle, pp 175–185

  15. Gao Y, Sandhu R, Fichtinger G, Tannenbaum AR (2010) A coupled global registration and segmentation framework with application to magnetic resonance prostate imagery. IEEE Trans Med Imaging 10: 17–81

    Google Scholar 

  16. Ghose S, Oliver A, Martí R, Lladó X, Freixenet J, Vilanova JC, Meriaudeau F (2010) Texture guided active appearance model propagation for prostate segmentation. In: Book Series Lecture Notes in Computer Science, vol 6367. Springer, pp 111–120

  17. Gómez-Villegas MA, Sanz L (1997) Reconciling Bayesian and frequentist evidence in the point null testing problem. Sociedad de Estadistica e Investigacion Operativa 7: 207–216

    Google Scholar 

  18. Gong L, Ng L, Pathaka SD, Tutar I, Choc PS, Haynord DR, Kim Y (2005) Prostate ultrasound image segmentation using level set-based region flow with shape guidance. Proc SPIE Med Imaging 5747: 1648–1657

    Google Scholar 

  19. Gong L, Pathak SD, Haynor DR, Cho PS, Kim Y (2004) Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Trans Med Imaging 23: 340–349

    Article  PubMed  Google Scholar 

  20. Gower JC (1975) Generalized procrustes analysis. Psychometrika 40: 33–51

    Article  Google Scholar 

  21. Granlund G, Knutsson H (1995) Signal processing for computer vision. Dordrecht

  22. Hodge AC, Ladak HM (2006) 3D prostate boundary segmentation from ultrasound images using 2D active shape models. In: 28th annual international conference of the IEEE engineering in medicine and biology society, pp 2337–2340

  23. Jendoubi A, Zeng J, Chouikha MF (2004) Segmentation of prostate ultrasound images using an improved snakes model. In: 7th International conference on signal processing, vol 3, pp 2568–2571

  24. Knutsson H, Granlund, GH (1983) Texture analysis using two-dimensional quadrature filters. In: IEEE computer society workshop on computer architecture for pattern analysis and image database management, pp 206–213

  25. Ladak HM, Mao F, Wang Y, Downey DB, Steinman DA, Fenster A (2000) Prostate segmentation from 2D ultrasound images. In: Proceedings of the 22nd annual international conference of the IEEE engineering in medicine and biology society, vol 4, pp 3188–3191

  26. Liu H, Cheng G, Rubens D, Strang JG, Liao L, Brasacchio R, Messing E, Yu’ Y (2002) Automatic segmentation of prostate boundaries in transrectal ultrasound (TRUS) imaging. Proc SPIE Med Imaging Image Process 4684: 412–423

    Google Scholar 

  27. Martin S, Daanen V, Troccaz J (2008) Atlas-based prostate segmentation using an hybrid registration. Int J Comput Assist Radiol Surg 3: 485–492

    Article  Google Scholar 

  28. Martin S, Troccaz J, Daanen V (2010) Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med Phys 37: 1579–1590

    Article  PubMed  Google Scholar 

  29. Medina R, Bravo A, Windyga P, Toro J, Yan P, Onik G (2005) A 2D active appearance model for prostate segmentation in ultrasound images. In: 27th Annual international conference of the IEEE engineering in medicine and biology society, pp 3363–3366

  30. MICCAI (2009) 2009 Prostate segmentation challenge MICCAI, http://wiki.na-mic.org/Wiki/index.php

  31. Mulet-Parada M, Noble J (2000) 2d+t Acoustic boundary detection in echocardiography. Med Image Anal 4: 21–30

    Article  PubMed  CAS  Google Scholar 

  32. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25: 987–1010

    Article  PubMed  Google Scholar 

  33. Pathak SD, Chalana V, Haynor DR, Kim Y (2000) Edge-guided boundary delineation in prostate ultrasound images. IEEE Trans Med Imaging 19: 1211–1219

    Article  PubMed  CAS  Google Scholar 

  34. Petrou M, Sevilla PG (2006) Image processing: dealing with texture, 1st edn. Wiley, New York

    Book  Google Scholar 

  35. Kovesi P (1999) Image feature from phase congruency. J Comput Vis Res 1: 1–26

    Google Scholar 

  36. Shao F, Ling KV, Ng WS, Wu RY (2003) Prostate boundary detection from ultrasonographic images. J Ultrasound Med 22: 605–623

    PubMed  Google Scholar 

  37. Shen D, Zhan Y, Davatzikos C (2003) Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Trans Med Imaging 22: 539–551

    Article  PubMed  Google Scholar 

  38. Woodruff AJ, Morgan TM, Wright JL, Porter CR (2008) Prostate volume as an independent predictor of prostate cancer and high-grade disease on prostate needle biopsy. J Clin Oncol 26: 5165

    Article  Google Scholar 

  39. Yan P, Xu S, Turkbey B, Kruecker J (2009) Optimal search guided by partial active shape model for prostate segmentation in TRUS images. Proc SPIE Med Imaging Vis Image Guided Proced Model 7261:72,611G–72,611G–11

  40. Yan P, Xu S, Turkbey B, Kruecker J (2010) Discrete deformable model guided by partial active shape model for TRUS image segmentation. IEEE Trans Biomed Eng 57: 1158–1166

    Article  PubMed  Google Scholar 

  41. Zaim A, Jankun J (2007) An energy-based segmentation of prostate from ultrasound images using dot-pattern select cells. IEEE Int Conf Acoust Speech Signal Process 1: I297–I300

    Google Scholar 

  42. Zhan Y, Shen D (2006) Deformable segmentation of 3D ultrasound prostate images using statistical texture matching method. IEEE Trans Med Imaging 25: 256–272

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Ghose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghose, S., Oliver, A., Martí, R. et al. Statistical shape and texture model of quadrature phase information for prostate segmentation. Int J CARS 7, 43–55 (2012). https://doi.org/10.1007/s11548-011-0616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0616-y

Keywords