Abstract
Purpose
Cross-sectional visualization of anatomical structures in DICOM viewers is usually presented in parallel slices. For visualizing the inner ear, this concept is unfavourable due to the spiral shape of the cochlea. Radial slicing through its central axis (known as midmodiolar view) is advantageous. Therefore, a custom DICOM viewer was developed, which allows the visualization of the cochlea in a midmodiolar slice plane that rotates around the central axis of the cochlea, always cutting the latter radially.
Methods
The program was written in C++ using the open-source libraries ITK, VTK, GDCM and Qt. The rotation axis is defined by placing two points in the modiolus within a conventional slice visualization of the dataset. A midmodiolar visualization is calculated based on this axis. Scrolling the mouse wheel rotates slice plane around the axis, displaying midmodiolar slices at variable angles. Measurement options are provided as well as interactive placement of marker points whose coordinates can be exported for post-processing in other programs.
Results
The program can be used in multiple applications including the determination of cochlear dimensions, especially its length, and post-operative positions of cochlear implant (CI) electrode carriers. Computer-aided design models of the cochlea can be generated from exported marker points.
Conclusion
The proposed DICOM viewer directly focuses on the needs of cochlear visualization, thus making it a valuable tool in CI related research. The ease of use facilitates future clinical use, e.g. for pre-operative selection of optimal CI electrode carrier length based on the patient’s cochlear length.















Similar content being viewed by others
References
Zahnert T (2011) The differential diagnosis of hearing loss. Dtsch Arztebl Int 108:433–444. doi:10.3238/arztebl.2011.0433
von Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, Hartmann R, Stürzebecher E, Klinke R (1999) Electric-acoustic stimulation of the auditory system. ORL 61:334–340. doi:10.1159/000027695
Gantz BJ, Turner CW (2003) Combining acoustic and electrical hearing. Laryngoscope 113:1726–1730. doi:10.1097/00005537-200310000-00012
James CJ, Fraysse B, Deguine O, Lenarz T, Mawman D, Ramos Á, Ramsden R, Sterkers O (2006) Combined electroacoustic stimulation in conventional candidates for cochlear implantation. Audiol Neurotol 11:57–62. doi:10.1159/000095615
von Ilberg CA, Baumann U, Kiefer J, Tillein J, Adunka OF (2011) Electric-acoustic stimulation of the auditory system: a review of the first decade. Audiol Neurotol 16:1–30. doi:10.1159/000327765
Incerti PV, Ching TYC, Cowan R (2013) A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices. Trends Amplif 17:3–26. doi:10.1177/1084713813480857
Irving S, Gillespie L, Richardson R, Rowe D, Fallon JB, Wise AK (2014) Electroacoustic stimulation: now and into the future. Biomed Res Int 2014:1–17. doi:10.1155/2014/350504
Lane JI, Witte RJ, Driscoll CLW, Camp JJ, Robb RA (2004) Imaging microscopy of the middle and inner ear. Part I: CT microscopy. Clin Anat 17:607–612. doi:10.1002/ca.20059
Braun K, Böhnke F, Stark T (2012) Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations. Acta Otolaryngol 132:603–613. doi:10.3109/00016489.2011.653670
Bellos C, Rigas G, Spiridon IF, Bibas A, Iliopoulou D, Böhnke F, Koutsouris D, Fotiadis DI (2014) Reconstruction of cochlea based on micro-CT and histological images of the human inner ear. Biomed Res Int 2014:485783. doi:10.1155/2014/485783
Henson MM, Henson OW, Gewalt SL, Wilson JL, Johnson GA (1994) Imaging the cochlea by magnetic resonance microscopy. Hear Res 75:75–80. doi:10.1016/0378-5955(94)90058-2
Thorne M, Salt AN, DeMott JE, Henson MM, Henson OW, Gewalt SL (1999) Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 109:1661–1668. doi:10.1097/00005537-199910000-00021
Lane JI, Witte RJ, Henson OW, Driscoll CLW, Camp J, Robb RA (2005) Imaging microscopy of the middle and inner ear—part II: MR microscopy. Clin Anat 18:409–415. doi:10.1002/ca.20152
Voie AH, Spelman FA (1995) Three-dimensional reconstruction of the cochlea from two-dimensional images of optical sections. Comput Med Imaging Graph 19:377–384. doi:10.1016/0895-6111(95)00034-8
Hofman R, Segenhout JM, Wit HP (2009) Three-dimensional reconstruction of the guinea pig inner ear, comparison of OPFOS and light microscopy, applications of 3D reconstruction. J Microsc 233:251–257. doi:10.1111/j.1365-2818.2009.03115.x
Buytaert JAN, Descamps E, Adriaens D, Dirckx JJJ (2012) The OPFOS microscopy family: high-resolution optical sectioning of biomedical specimens. Anat Res Int 2012:1–9. doi:10.1155/2012/206238
Lorbeer R-A, Heidrich M, Lorbeer C, Ramírez Ojeda DF, Bicker G, Meyer H, Heisterkamp A (2011) Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph. Opt Express 19:5419–5430. doi:10.1364/OE.19.005419
Rau TS, Würfel W, Lenarz T, Majdani O (2013) Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear. Int J CARS 8:481–509. doi:10.1007/s11548-013-0825-7
Valeri G, Mazza FA, Maggi S, Aramini D, La Riccia L, Mazzoni G, Giovagnoni A (2014) Open source software in a practical approach for post processing of radiologic images. Radiol Med. doi:10.1007/s11547-014-0437-5
Roland PS, Wright CG (2006) Surgical aspects of cochlear implantation: mechanisms of insertional trauma. Adv Otorhinolaryngol 64:11–30. doi:10.1159/000094642
Adunka OF, Radeloff A, Gstoettner WK, Pillsbury HC, Buchman CA (2007) Scala tympani cochleostomy II: topography and histology. Laryngoscope 117:2195–2200. doi:10.1097/MLG.0b013e3181453a53
Rebscher SJ, Hetherington A, Bonham B, Wardrop P, Whinney D, Leake PA (2008) Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion. J Rehabil Res Dev 45:731–747. doi:10.1682/JRRD.2007.08.0119
Todd CA, Naghdy F, Svehla MJ (2007) Force application during cochlear implant insertion: an analysis for improvement of surgeon technique. IEEE Trans Biomed Eng 54:1247–1255. doi:10.1109/TBME.2007.891937
Majdani O, Schurzig D, Hussong A, Rau T, Wittkopf J, Lenarz T, Labadie RF (2010) Force measurement of insertion of cochlear implant electrode arrays in vitro: comparison of surgeon to automated insertion tool. Acta Otolaryngol 130:31–36. doi:10.3109/00016480902998281
Rau TS, Hussong A, Leinung M, Lenarz T, Majdani O (2010) Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model. Int J CARS 5:173–181. doi:10.1007/s11548-009-0299-9
Kontorinis G, Lenarz T, Stöver T, Paasche G (2011) Impact of the insertion speed of cochlear implant electrodes on the insertion forces. Otol Neurotol 32:565–570. doi:10.1097/MAO.0b013e318219f6ac
Rebscher SJ, Talbot N, Bruszewski W, Heilmann M, Brasell J, Merzenich MM (1996) A transparent model of the human scala tympani cavity. J Neurosci Methods 64:105–114. doi:10.1016/0165-0270(95)00116-6
Clark JR, Warren FM, Abbott JJ (2011) A scalable model for human scala-tympani phantoms. J Med Device 5:014501. doi:10.1115/1.4002932
Lecerf P, Bakhos D, Cottier J-P, Lescanne E, Trijolet JP, Robier A (2011) Midmodiolar reconstruction as a valuable tool to determine the exact position of the cochlear implant electrode array. Otol Neurotol 32:1075–1081. doi:10.1097/MAO.0b013e318229d4dd
Hardy M (1938) The length of the organ of Corti in man. Am J Anat 62:291–311. doi:10.1002/aja.1000620204
Ulehlová L, Voldrich L, Janisch R (1987) Correlative study of sensory cell density and cochlear length in humans. Hear Res 28:149–151. doi:10.1016/0378-5955(87)90045-1
Singla A, Sahni D, Gupta AK, Aggarwal A, Gupta T (2014) Surgical anatomy of the basal turn of the human cochlea as pertaining to cochlear implantation. Otol Neurotol. doi:10.1097/MAO.0000000000000371
Würfel W, Lanfermann H, Lenarz T, Majdani O (2014) Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res 316:65–72. doi:10.1016/j.heares.2014.07.013
van der Marel KS, Briaire JJ, Wolterbeek R, Snel-Bongers J, Verbist BM, Frijns JHM (2014) Diversity in cochlear morphology and its influence on cochlear implant electrode position. Ear Hear 35:e9–20. doi:10.1097/01.aud.0000436256.06395.63
Adunka O, Unkelbach MH, Mack MG, Radeloff A, Gstoettner W (2005) Predicting basal cochlear length for electric-acoustic stimulation. Arch Otolaryngol Head Neck Surg 131:488–492. doi:10.1001/archotol.131.6.488
Qt. http://download.qt.io/archive/qt/. Accessed 23 Sept 2015
Visualization Toolkit. http://www.vtk.org/. Accessed 23 Sept 2015
Insight Segmentation and Registration Toolkit. http://www.itk.org. Accessed 23 Sept 2015
Grassroots DICOM. http://gdcm.sourceforge.net. Accessed 23 Sept 2015
Verbist BM, Skinner MW, Cohen LT, Leake PA, James C, Boëx C, Holden TA, Finley CC, Roland PS, Roland JT, Haller M, Patrick JF, Jolly CN, Faltys MA, Briaire JJ, Frijns JHM (2010) Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol 31:722–730. doi:10.1097/MAO.0b013e3181d279e0
Wysocki J (1999) Dimensions of the human vestibular and tympanic scalae. Hear Res 135:39–46. doi:10.1016/S0378-5955(99)00088-X
Biedron S, Prescher A, Ilgner J, Westhofen M (2010) The internal dimensions of the cochlear scalae with special reference to cochlear electrode insertion trauma. Otol Neurotol 31:731–7. doi:10.1097/MAO.0b013e3181d27b5e
Ferrarini L, Verbist BM, Olofsen H, Vanpoucke F, Frijns JHM, Reiber JHC, Admiraal-Behloul F (2008) Autonomous virtual mobile robot for three-dimensional medical image exploration: application to micro-CT cochlear images. Artif Intell Med 43:1–15. doi:10.1016/j.artmed.2008.03.004
Verbist BM, Ferrarini L, Briaire JJ, Zarowski A, Admiraal-Behloul F, Olofsen H, Reiber JHC, Frijns JHM (2009) Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery. Otol Neurotol 30:471–477. doi:10.1097/MAO.0b013e3181a32c0d
Adunka OF, Pillsbury HC, Buchman CA (2010) Minimizing intracochlear trauma during cochlear implantation. Adv Otorhinolaryngol 67:96–107. doi:10.1159/000262601
Buytaert JAN, Johnson SB, Dierick M, Salih WHM, Santi PA (2013) MicroCT versus sTSLIM 3D imaging of the mouse cochlea. J Histochem Cytochem 61:382–95. doi:10.1369/0022155413478613
Noble JH, Labadie RF, Majdani O, Dawant BM (2011) Automatic segmentation of intracochlear anatomy in conventional CT. IEEE Trans Biomed Eng 58:2625–2632. doi:10.1109/TBME.2011.2160262
Noble JH, Schuman TA, Wright CG, Labadie RF, Dawant BM (2011) Automatic identification of cochlear implant electrode arrays for post-operative assessment. Proc SPIE 7962:1–20. doi:10.1117/12.878490
Acknowledgments
The presented work was funded by the German Research Association (DFG) through the cluster of excellence “Hearing4all” and by the German Federal Ministry of Education and Research (BMBF, FKZ 13GW0019E). Responsibility for the contents of this publication lies with the authors. The authors would like to thank Mr. Marcel Kluge for the preparation of the 3D-printed cochlea models and Mr. Christoph Rostkowski and Mr. Max Timm for their help in the validation experiments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
G. Jakob Lexow, Daniel Schurzig, Nils-Claudius Gellrich, Thomas Lenarz, Omid Majdani and Thomas S. Rau declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Lexow, G.J., Schurzig, D., Gellrich, NC. et al. Visualization, measurement and modelling of the cochlea using rotating midmodiolar slice planes. Int J CARS 11, 1855–1869 (2016). https://doi.org/10.1007/s11548-016-1374-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-016-1374-7