Abstract
Modern graphics processing units (GPUs) are commodity data-parallel coprocessors capable of high performance computation and data throughput. It is well known that the GPUs are ideal implementation platforms for image processing applications. However, the level of efforts and expertise to optimize the application performance is still substantial. This paper investigates the computation-to-core mapping strategies to probe the efficiency and scalability of the robust facet image modeling algorithm on GPUs. Our fine-grained computation-to-core mapping scheme achieves a significant performance gain over the standard pixel-wise mapping scheme. With in-depth performance comparisons across the two different mapping schemes, we analyze the impact of the level of parallelism on the GPU computation and suggest two principles for optimizing future image processing applications on the GPU platform.















Similar content being viewed by others
References
AMD Inc.: AMD Accelerated Processing Units. Retrieved Feb. 2012 (2011). http://www.amd.com/us/products/technologies/fusion/Pages/fusion.aspx
Archuleta, J., Cao, Y., Scogland, T., Feng W.: Multi-dimensional characterization of temporal data mining on graphics processors. In: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing (IPDPS ’09), IEEE Computer Society, pp. 1–12 (2009)
Branover, A., Foley, D., Steinman, M.: AMD’s Llano Fusion APU. IEEE Micro 99 (PrePrints, 2012)
Besl, P., Birch, J., Watson, L.: Robust window operators. Mach. Vis. Appl. 2(4), 179–191 (1989)
Bui, P., Brockman, J.: Performance analysis of accelerated image registration using GPGPU. In: Proceedings of 2nd workshop on General Purpose Processing on Graphics Processing Units, ACM, pp 38–45 (2009)
Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput Surv 23(1), 5–48 (1991)
Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Gregg, C., Hazelwood, K.: Where is the data? Why you cannot debate CPU vs. GPU performance without the answer. In: 2011 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 134–144 (2011)
Haralick, R.M., Watson, L.T.: A facet model for image data. Comput. Graph. Image Process. 15(2), 113–129 (1981)
Haralick, R.M., Watson, L.T., Laffey, T.J.: The topographic primal sketch. Int. J. Robot. Res. 2(1), 50–72 (1983)
Haralick, R.M.: Digital step edges from zero crossing of second directional derivatives. IEEE Trans. Pattern Anal. Mach. Intell. {\bf PAMI-6}(1):58–68 (1984)
Harish, P., Narayanan, P.: Accelerating large graph algorithms on the GPU using CUDA. In: Proceedings of the 14th International Conference on High, Performance Computing (HiPC’07), pp. 197–208 (2007)
Huang, J., Ponce, S., Park, S.I., Cao, Y., Quek, F.: GPU-accelerated computation for robust motion tracking using the CUDA framework. In: 5th International Conference on Visual Information Engineering, VIE 2008, pp. 437–442 (2008)
Householder, A.: Unitary triangularization of a nonsymmetric matrix. J. ACM 5(4), 339–342 (1958)
Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)
Jankowski, M.: Iterated facet model approach to background normalization. SPIE 2238, 198–206 (1994)
Luo, Y.M., Duraiswami, R.: Canny edge detection on NVIDIA CUDA. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Vol. 43(1), pp. 1–8 (2008)
Mainguy, J., Birch, J.B., Watson, L.T.: A robust variable order facet model for image data. Mach. Vis. Appl. 8, 141–162 (1995)
Matalas, I., Benjamin, R., Kitney, R.: An edge detection technique using the facet model and parameterized relaxation labeling. IEEE Trans. Pattern Anal. Mach. Intell. 19, 328–341 (1997)
Mizukami, Y., Tadamura, K.: Optical flow computation on compute unified device architecture. In: ICIAP 07: Proceedings of the 14th International Conference on Image Analysis and Processing, pp. 179–184 (2007)
Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue 6(2), 40–53 (2008)
NVIDIA Corporation: NVIDIA’s Compute Unified Device Architecture. Retrieved Feb. 2012 (2010). http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
NVIDIA Corporation: NVIDIA CUDA Best Practices Guide. Retrieved Feb. 2012 (2009). http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf
NVIDIA Corporation: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. Retrieved Feb. 2012 (2010). http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krűger, J., Lefohn, A.E., Purcell, T.J.: A survey of general purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)
Pathak, S.D., Kim, Y., Kim, J.: Efficient implementation of facet models on a multimedia system. Opt. Eng. 35(6), 1739–1745 (1996)
Qiang, J., Haralick, R.M.: Efficient facet edge detection and quantitative performance evaluation. Pattern Recognit. 35(3), 689–700 (2002)
Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D., Hwu, W.: Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, pp. 73–82 (2008a)
Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z., Baghsorkhi, S.S., Hwu, W.: Program optimization carving for GPU computing. J. Parallel Distrib. Comput. 68(10), 1389–1401 (2008b)
Park, S.I., Cao, Y., Watson, L.T.: A novel computation-to-core mapping scheme for robust facet image modeling on GPUs. In: The 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), pp. 189–195 (2010)
Schaa, D., Kaeli, D.: Exploring the multiple-GPU design space. In: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing (IPDPS ’09), pp. 1–12 (2009)
Scheuermann, T., Hensley, J.: Efficient histogram generation using scattering on GPUs. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, pp. 33–37 (2007)
Sinha, S., Frahm, J.M., Pollefeys, M., Genc, Y.: Feature tracking and matching in video using programmable graphics hardware. Mach. Vis. Appl., 22(1), pp. 207–217 (2007)
Trefethen, L.N., Bau, D.: Numerical linear algebra. SIAM Press, Philadelphia (1997)
Terzopoulos, D.: The computation of visible-surface representation. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 417–438 (1988)
Torr, P.H.S., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)
Vineet, V., Narayanan, P.J.: CUDA cuts: Fast graph cuts on the GPU. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2008)
Whitehead, N., Fit-Florea, A.: Precision and Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs, White Paper, NVIDIA Corporation (2011)
Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and, Pattern Recognition (CVPR’03), pp. 211–217 (2003)
Yang, R., Pollefeys, M., Li, S.: Improved real-time stereo on commodity graphics hardware. In: Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition workshop (CVPRW’04), p. 36 (2004)
Yixun, L., Zhang, E.Z., Shen, X.: A cross-input adaptive framework for GPU program optimizations. In: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–10 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Park, S.I., Cao, Y., Watson, L.T. et al. Performance analysis of a novel GPU computation-to-core mapping scheme for robust facet image modeling. J Real-Time Image Proc 10, 485–500 (2015). https://doi.org/10.1007/s11554-012-0272-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-012-0272-7