Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Fast similarity metric for real-time template-matching applications

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this study, a visual similarity metric based on precision–recall graphs is presented as an alternative to the widely used Hausdorff distance (HD). Such metric, called maximum cardinality similarity metric, is computed between a reference shape and a test template, each one represented by a set of edge points. We address this problem using a bipartite graph representation of the relationship between the sets. The matching problem is solved using the Hopcroft–Karp algorithm, taking advantage of its low computational complexity. We present a comparison between our results and those obtained from applying the partial Hausdorff distance (PHD) to the same test sets. Similar results were found using both approaches for standard template-matching applications. Nevertheless, the proposed methodology is more accurate at determining the completeness of partial shapes under noise conditions. Furthermore, the processing time required by our methodology is lower than that required to compute the PHD, for a large set of points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ali, M., Ghafoor, M., Taj, I.A., Hayat, K.: Palm print recognition using oriented Hausdorff distance transform. In: Proceedings of Frontiers of Information Technology, pp. 85–88 (2011)

  2. Arbelaez, P., Fowlkes, C, Martin, D.: The Berkeley segmentation dataset and benchmark. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. Accessed Dec 2012.

  3. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  5. Correa-Tome, F.E., Sanchez-Yanez, R.E., Ayala-Ramirez, V.: Comparison of perceptual color spaces for natural image segmentation tasks. Opt. Eng. 50(11), 117203 (2011)

    Article  Google Scholar 

  6. Correa-Tome, F.E., Sanchez-Yanez, R.E., Ayala-Ramirez, V.: Measuring empirical discrepancy in image segmentation results. IET Comput. Vis. 6(3), 224–230 (2012)

    Google Scholar 

  7. Dastmalchi, H., Jafaryahya, J., Najafi, R., Daneshkhah, A.: Averaged segmental partial Hausdorff distance for robust face recognition. In: Proceedings of 2nd International Conference on Intelligent Systems, pp. 35–39 (2011)

  8. Hanniel, I., Krishnamurthy, A., McMains, S.: Computing the Hausdorff distance between NURBS surfaces using numerical iteration on the GPU. Graph. Models 74(4), 255–264 (2012)

    Article  Google Scholar 

  9. Hopcroft, J.E., Karp, R.M.: A n 5/2 algorithm for maximum matchings in bipartite graphs. In: Proceedings of IEEE Annual Symposium on Foundations of Computer Science, pp. 122–125 (1971)

  10. Hossain, M.J., Dewan, M.A.A., Ahn, K., Chae, O.: A linear time algorithm of computing Hausdorff distance for content-based image analysis. Circ. Syst. Signal. Process 31(1), 389–399 (2011)

    Article  MathSciNet  Google Scholar 

  11. Hossain, M.J., Dewan, M.A.A., Chae, O. A flexible edge matching technique for object detection in dynamic environment. Appl. Intell. 36(3), 638–648 (2011)

    Article  Google Scholar 

  12. Hu, Y., Wang, Z.: A similarity measure based on Hausdorff distance for human face recognition. In: Proceedings of 18th International Conference on Pattern Recognition, pp. 1131–1134 (2006)

  13. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  14. Huttenlocher, D.P., Rucklidge, W.J.: A multi-resolution technique for comparing images using the Hausdorff distance. In: Proceedings of Computer Vision and Pattern Recognition, pp. 705–706 (1993)

  15. Ji, Y.H., Song, J.B., Choi, J.H.: Outdoor mobile robot localization using Hausdorff distance-based matching between COAG features of elevation maps and laser range data. In: Proceedings of 11th International Conference on Control, Automation and Systems, pp. 686–689 (2011)

  16. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knauer, C., Lffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets. Theor. Comput. Sci. 412(32), 4173–4186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krishnamurthy, A., McMains, S., Hanniel, I.: GPU-accelerated Hausdorff distance computation between dynamic deformable NURBS surfaces. Comput.-Aided Des. 43(11), 1370–1379 (2011)

    Article  Google Scholar 

  19. Li, Y., Stevenson, R.L.: A similarity metric for multimodal images based on modified Hausdorff distance. In: Proceedings of 9th International Conference on Advanced Video and Signal-Based Surveillance, pp. 143–148 (2012)

  20. Lin, K.H., Guo, B., Lam, K.M., Siu, W.C.: Human face recognition using a spatially weighted modified Hausdorff distance. In: Proceedings of International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 477–480 (2001)

  21. Lin, P.L., Lai, Y.H., Huang, P.W. Dental biometrics: human identification based on teeth and dental works in bitewing radiographs. Pattern Recogn. 45(3), 934–946 (2012)

    Article  MathSciNet  Google Scholar 

  22. Liu, Y., Lee, S.: PSU Near-Regular Texture Database. http://vivid.cse.psu.edu/. Accessed December 2012

  23. Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.K.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

  24. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  25. Niu, L.P., Jiang, X.H., Zhang, W.H., Shi, D.X.: Image registration based on Hausdorff distance. In: Proceedings of International Conference on Networking and Information Technology, pp. 252–256 (2010)

  26. Rucklidge, W.J.: Locating objects using the Hausdorff distance. In: Proceedings of 5th International Conference on Computer Vision, pp. 457–464 (1995)

  27. Rucklidge, W.J.: Efficiently locating objects using the Hausdorff distance. Int. J. Comput. Vis. 24(3), 251–270 (1997)

    Article  Google Scholar 

  28. Sim, D.G., Park, R.H.: Two-dimensional object alignment based on the robust oriented Hausdorff similarity measure. IEEE Trans. Image Process. 10(3), 475–483 (2001)

    Article  MATH  Google Scholar 

  29. Tsapanos, N., Tefas, A., Nikolaidis, N., Pitas, I.: Shape matching using a binary search tree structure of weak classifiers. Pattern Recogn. 45(6), 2363–2376 (2012)

    Article  MATH  Google Scholar 

  30. van Rijsbergen, C.J.: Information retrieval, 2 edn. Butterworths, London (1979)

  31. Xu, D.: A unified approach to autofocus and alignment for pattern localization using hybrid weighted Hausdorff distance. Pattern Recogn. Lett. 32(14), 1747–1755 (2011)

    Article  Google Scholar 

  32. Yang, C.H.T., Lai, S.H., Chang, L.W.: Hybrid image matching combining Hausdorff distance with normalized gradient matching. Pattern Recogn. 40(4), 1173–1181 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Fernando E. Correa-Tome thanks to the Mexican “National Council on Science and Technology”, CONACyT, for the financial support provided via the scholarship 295697/226942. This work has been partially funded by the University of Guanajuato via the project “Características Visuales Relevantes para el Reconocimiento de Objetos”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul E. Sanchez-Yanez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correa-Tome, F.E., Sanchez-Yanez, R.E. Fast similarity metric for real-time template-matching applications. J Real-Time Image Proc 12, 145–153 (2016). https://doi.org/10.1007/s11554-013-0363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-013-0363-0

keywords