Abstract
Markerless motion capture (MMOCAP) is the problem of determining the pose of a person from images captured by one or several cameras simultaneously without using markers on the subject. Evaluation of the solutions is frequently the most time-consuming task, making most of the proposed methods inapplicable in real-time scenarios. This paper presents an efficient approach to parallelize the evaluation of the solutions in CPUs and GPUs. Our proposal is experimentally compared on six sequences of the HumanEva-I dataset using the CMAES algorithm. Multiple algorithm’s configurations were tested to analyze the best trade-off with regard to the accuracy and computing time. The proposed methods obtain speedups of 8\(\times\) in multi-core CPUs, 30\(\times\) in a single GPU and up to 110\(\times\) using 4 GPUs.
Similar content being viewed by others
Notes
Detailed information about the MMOCAP implementation, the GPU kernels source code and experimental results is available at: http://www.uco.es/grupos/kdis/wiki/MMOCAP.
References
Multon, F., Kulpa, R., Hoyet, L., Komura, T.: Interactive animation of virtual humans based on motion capture data. J. Vis. Comput. Animat. 20(5–6), 491–500 (2009)
Zhou, H., Huosheng, H.: Human motion tracking for rehabilitation-a survey. Biomed. Signal Process. Control. 3(1), 1–18 (2008)
Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104, 90–126 (2006)
Sigal, L., Balan, A.O., Black, M.J.: Humaneva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 87, 4–27 (2010)
Isard, M., Blake, A.: Condensation—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)
Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. Int. J. Comput. Vis. 61(2), 185–205 (2005)
Corazza, S., Mündermann, L., Chaudhari, A., Demattio, T., Cobelli, C., Andriacchi, T.: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann. Biomed. Eng. 34(6), 1019–1029 (2006)
John, M., Michael I.: Partitioned sampling, articulated objects, and interface-quality hand tracking. In: Proceedings of the 6th European Conference on Computer Vision-Part II, ECCV ’00, pp 3–19. Springer, London (2000)
Jan, B., Florian, E., Michael B.: Evaluation of hierarchical sampling strategies in 3D human pose estimation. In: Proceedings of the 19th British Machine Vision Conference, pp. 1–10 (2008)
Lozano, M., Molina, D., Herrera, F. (eds.): Special issue on scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems. Soft computing, vol. 15. Springer, Berlin/Heidelberg (2011)
John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical particle swarm optimisation. Image Vis. Comput. 28(11), 1530–1547 (2010)
Zhao, X., Liu, Y.: Generative tracking of 3D human motion by hierarchical annealed genetic algorithm. Pattern Recognit. 41(8), 2470–2483 (2008)
Yeguas-Bolivar, E., Muñnoz-Salinas, R., Medina-Carnicer, R., Carmona-Poyato, A.: Comparing evolutionary algorithms and particle filters for markerless human motion capture. Appl. Soft Comput. 17, 153–166 (2014)
Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E., (eds.) Towards a new evolutionary computation. Advances on Estimation of Distribution Algorithms, pp. 75–102. Springer, Berlin (2006)
Kenneth, V., Price, R.M.S., Jouni A.L.: Differential evolution a practical approach to global optimization. In: The Differential Evolution Algorithm, pp. 37–134. Natural Computing Series. Springer, Berlin (2005)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
Chang, I.-C., Lin, S.-Y.: 3D human motion tracking based on a progressive particle filter. Pattern Recognit. 43(10), 3621–3635 (2010)
Gall, J., Rosenhahn, B., Brox, T., Seidel, H.-P.: Optimization and filtering for human motion capture. Int. J. Comput. Vis. 87(1–2), 75–92 (2010)
Cappozzo, A., Ugo D.C., Alberto L., Lorenzo C.: Human movement analysis using stereophotogrammetry: Part 1: theoretical background. Gait Posture. 21(2), 186–196 (2005)
Chiari, L., Ugo D.C., Alberto L., Aurelio C.: Human movement analysis using stereophotogrammetry: Part 2: Instrumental errors. Gait Posture. 21(2), 197–211 (2005)
Ugo, D.C, Alberto, L., Lorenzo, C., Aurelio, C.: Alberto Leardini, Lorenzo Chiari, and Aurelio Cappozzo. Human movement analysis using stereophotogrammetry: Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 21(2), 226–237 (2005)
Leardini, A., Chiari, L., Ugo D.C., Aurelio C.: Human movement analysis using stereophotogrammetry: Part 3. soft tissue artifact assessment and compensation. Gait Posture. 21(2), 212–225 (2005)
Chitty, D.M.: Fast parallel genetic programming: Multi-core cpu versus many-core gpu. Soft Comput. 16(10), 1795–1814 (2012)
Creel, M., Goffe, W.L.: Multi-core CPUs, clusters, and grid computing: a tutorial. Comput. Eco. 32(4), 353–382 (2008)
Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A performance study of general-purpose applications on graphics processors using CUDA. J. Parallel Dist. Comput. 68(10), 1370–1380 (2008)
Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Comput. Gr. Forum 26(1), 80–113 (2007)
NVIDIA Corporation. NVIDIA CUDA Programming and Best Practices Guide. http://www.nvidia.com/cuda (2014)
Rymut, B., Kwolek, B.: GPU-supported object tracking using adaptive appearance models and particle swarm optimization. In: Proceedings of the 2010 international conference on Computer vision and graphics: Part II, ICCVG’10, pp. 227–234 (2010)
Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-accelerated tracking of the motion of 3D articulated figure. Comput. Vis. Gr. pp. 155–162 (2010)
Luca, M., Spela, I., Stefano, C.: Markerless articulated human body tracking from multi-view video with GPU-PSO. In: Gianluca, T., Andy, M.T., Julian F.M., (eds.) Evolvable systems: from biology to hardware, vol. 6274, Lecture Notes in Computer Science, pp. 97–108 (2010)
Rymut, B., Kwolek, B., Krzeszowski, T.: GPU-accelerated human motion tracking using particle filter combined with PSO. Advanced concepts for intelligent vision systems. Lect. Notes Comput. Sci. 8192, pp. 426–437 (2013)
Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 1493–1500 (2009)
Ugolotti, R., Youssef S.G.N., Pablo M., Lvekovi, P., Luca M., Stefano C.: Particle swarm optimization and differential evolution for model-based object detection. Appl. Soft Comput. 13(6), 3092–3105 (2013)
Zheng, Z., Hock, S.S.: Cuda acceleration of 3D dynamic scene reconstruction and 3D motion estimation for motion capture. In: IEEE 18th International Conference on Parallel and Distributed Systems (ICPADS), pp. 284–291 (2012)
Zhang, Z., Hock, S.S, Chee K.Q., Jixiang, S.: GPU-accelerated real-time tracking of full-body motion with multi-layer search. IEEE Trans. Multimed. 15, 106–119 (2013)
Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 755–762 (2010)
Diaz-Mas, L., Madrid-Cuevas, F.J., Muñoz-Salinas, R., Carmona-Poyato, A., Medina-Carnicer, R.: An octree-based method for shape from inconsistent silhouettes. Pattern Recognit. 45(9), 3245–3255 (2012)
Diaz-Mas, L., Muñoz-Salinas, R., Medina-Carnicer, R., Madrid-Cuevas, F.J.: Shape from silhouette using dempster-shafer theory. Pattern Recognit. 43(6), 2119–2131 (2010)
Muñoz-Salinas, R., Yeguas-Bolivar, E., Diaz-Mas, L., Medina-Carnicer, R.: Shape from pairwise silhouettes for plan-view map generation. Image Vis. Comput. 30(2), 122–133 (2012)
Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: 7th IEEE International Conference on Computer Vision, Frame Rate Workshop (ICCV ’99), pp. 1–19 (1999)
Grégory, R., Carlos O.-U., Martínez-del Rincón, J.: A spatio-temporal 2D-models framework for human pose recovery in monocular sequences. Pattern Recognit. 41, 2926–2944 (2008)
Sundaresan, A., Chellappa, R.: Model driven segmentation of articulating humans in laplacian eigenspace. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1771–1785 (2008)
Zhao, X., Liu, Y.: Generative tracking of 3d human motion by hierarchical annealed genetic algorithm. Pattern Recognit. 41, 2470–2483 (2008)
Manuel, B., Marc F., Jose C.: Makehuman Team. http://www.makehuman.org/ (2014)
Maeda, T., Yamasaki, T., Aizawa, K.: Model-based analysis and synthesis of time-varying mesh. Lect. Notes Comput. Sci. 5098, 112–121 (2008)
Schmaltz, C., Rosenhahn, B., Brox, T., Weickert, J., Wietzke, L., Sommer, G.: Dealing with self-occlusion in region based motion capture by means of internal regions. Lect. Notes Comput. Sci. 5098, 102–111 (2008)
Shaheen, M., Gall, J., Strzodka, R., Van G.L., Seidel, H.P.: A comparison of 3D model-based tracking approaches for human motion capture in uncontrolled environments. Appl. Comput. Vis. pp. 1–8 (2009)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn Res. 7, 1–30 (2006)
García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)
Kalyanmoy D.: Multi-objective optimization. In: Edmund, K.B., Graham, K., (eds.) Search methodologies, pp. 273–316. Springer, Berlin (2005)
Acknowledgments
This research was supported by the Spanish Ministry of Science and Technology, projects TIN-2011-22408 and TIN-2012-32952, and by FEDER funds. This research was also supported by the Spanish Ministry of Education under FPU grant AP2010-0042.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cano, A., Yeguas-Bolivar, E., Muñoz-Salinas, R. et al. Parallelization strategies for markerless human motion capture. J Real-Time Image Proc 14, 453–467 (2018). https://doi.org/10.1007/s11554-014-0467-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-014-0467-1