Abstract
In this paper, a two-step image enhancement is presented. In the first step, color correction and underwater image quality enhancement are conducted if there are artifacts such as darkening, hazing and fogging. In the second step, the image resolution optimized in the previous step is enhanced using the convolutional neural network (CNN) with deep learning capability. The main reason behind the adoption of this two-step technique, which includes image quality enhancement and super-resolution, is the need for a robust strategy to visually improve underwater images at different depths and under diverse artifact conditions. The effectiveness and robustness of the real-time algorithm are satisfactory for various underwater images under different conditions, and several experiments have been undertaken for the two datasets of images. In both stages and for each of image datasets, the mean square error (MSE), peak signal to noise ratio (PSNR), and structural similarity (SSIM) evaluation measures were fulfilled. In addition, the low computational complexity and suitable outputs were obtained for different artifacts that represented divergent depths of water to achieve a real-time system. The super-resolution in the proposed structure for medium layers can offer a proper response. For this reason, time is also one of the major factors reported in the research. Applying this model to underwater imagery systems will yield more accurate and detailed information.
Similar content being viewed by others
References
Tang, C., von Lukas, U.F., Vahl, M., Wang, S., Wang, Y., Tan, M.: Efficient underwater image and video enhancement based on Retinex. SIViP 13(5), 1011–1018 (2019)
Kanaev, A.V., Smith, L.N., Hou, W.W., Woods, S.: Restoration of turbulence degraded underwater images. Opt. Eng. 51(5), 057007 (2012)
Yu, J., Wang, Y., Zhou, S., Zhai, R., Huang, S.: Unmanned aerial vehicle (UAV) image haze removal using dark channel prior. J. Phys. Conf. Ser. 1324(1), 012036 (2019)
Golts, A., Freedman, D., Elad, M.: Unsupervised single image dehazing using dark channel prior loss. IEEE Transactions on Image Processing (2019).
Khosravi, M.R., Samadi, S.: Data compression in ViSAR sensor networks using non-linear adaptive weighting. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–8 (2019)
Cho, Y., Malav, R., Pandey, G., Kim, A.: DehazeGAN: underwater haze image restoration using unpaired image-to-image translation. IFAC-PapersOnLine. 52(21), 82–85 (2019)
Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010, 1–4 (2010)
Lu, H., Li, Y., Zhang, Y., Chen, M., Serikawa, S., Kim, H.: Underwater optical image processing: a comprehensive review. Mobile Netw. Appl. 22(6), 1204–1211 (2017)
Sethi, R., Sreedevi, I.: Adaptive enhancement of underwater images using multi-objective PSO. Multimed. Tools Appl. 78(22), 31823–31845 (2019)
Lu, H., Li, Y., Xu, X., Li, J., Liu, Z., Li, X., Yang, J., Serikawa, S.: Underwater image enhancement method using weighted guided trigonometric filtering and artificial light correction. J. Vis. Commun. Image Represent. 1(38), 504–516 (2016)
Chiang, J.Y., Chen, Y.C.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 21(4), 1756–1769 (2011)
Khosravi, M.R., Moghimi, M.K.: Underwater optical image processing. Modern Approaches Oceanogr Petrochem. Sci 1(1), 1–2 (2018). https://doi.org/10.32474/MAOPS.2018.01.000101
Anwer, A., Ali, S.S., Khan, A., Mériaudeau, F.: Real-time underwater 3D scene reconstruction using commercial depth sensor. In 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS) 2016 Dec 13 (pp. 67–70). IEEE.
Çelebi, A.T., Ertürk, S.: Visual enhancement of underwater images using empirical mode decomposition. Expert Syst. Appl. 39(1), 800–805 (2012)
Abas, P.E., De Silva, L.C.: Review of underwater image restoration algorithms. IET Image Proc. 13(10), 1587–1596 (2019)
Han, M., Lyu, Z., Qiu, T., Xu, M.: A review on intelligence dehazing and color restoration for underwater images. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2018 Jan 23.
Shortis, M., Abdo, E.H.: A review of underwater stereo-image measurement for marine biology and ecology applications. In Oceanography and Marine Biology 2016 Apr 19 (pp. 269–304). CRC Press.
Li, C., Guo, J., Guo, C.: Emerging from water: underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 25(3), 323–327 (2018)
Moghimi, M.K., Mohanna, F.: A joint adaptive evolutionary model towards optical image contrast enhancement and geometrical reconstruction approach in underwater remote sensing. SN Appl. Sci. 1(10), 1242 (2019)
Ji, T., Wang, G.: An approach to underwater image enhancement based on image structural decomposition. J. Ocean Univ. Chin. 14(2), 255–260 (2015)
Khosravi, M.R.: The shortfalls of underwater sensor network simulators. Sea Technol. 60(5), 41–41 (2019)
Ghani, A.S., Isa, N.A.: Underwater image quality enhancement through Rayleigh-stretching and averaging image planes. Int. J. Naval Archit. Ocean Eng. 6(4), 840–866 (2014)
Seemakurthy, K., Rajagopalan, A.N.: Deskewing of underwater images. IEEE Trans. Image Process. 24(3), 1046–1059 (2015)
Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Oceanic Eng. 41(3), 541–551 (2015)
Galdran, A., Pardo, D., Picón, A., Alvarez-Gila, A.: Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 1(26), 132–145 (2015)
Bianco, G., Muzzupappa, M., Bruno, F., Garcia, R., Neumann, L.: A new color correction method for underwater imaging. Int. Arch. Photogramm., Remote Sens Spatial Inf. Sci. 40(5), 25 (2015)
Fu, X., Fan, Z., Ling, M., Huang, Y., Ding, X.: Two-step approach for single underwater image enhancement. In 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) 2017 Nov 6 (pp. 789–794). IEEE.
Iqbal, K., Salam, R.A., Osman, A., Talib, A.Z.: Underwater Image Enhancement Using an Integrated Colour Model. IAENG International Journal of computer science. 2007 Dec 1;34(2).
Liu, Y., Xu, H., Shang, D., Li, C., Quan, X.: An underwater image enhancement method for different illumination conditions based on color tone correction and fusion-based descattering. Sensors 19(24), 5567 (2019)
Fiuzy, M.M., Rezaei, K.F., Haddadnia, J.M.: A novel approach for segmentation special region in an image. Majlesi J. Multimed. Process. 2011 Sep 23;1(2).
Arel, I., Rose, D.C., Karnowski, T.P.: Research frontier: deep machine learning–a new frontier in artificial intelligence research. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems 2012 (pp. 1097–1105).
Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: Can plain neural networks compete with BM3D?. In 2012 IEEE conference on computer vision and pattern recognition 2012 Jun 16 (pp. 2392–2399). IEEE.
Schuler, C.J., Christopher, B.H., Harmeling, S., Scholkopf, B.: A machine learning approach for non-blind image deconvolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2013 (pp. 1067–1074).
Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X.: Deep network cascade for image super-resolution. In European Conference on Computer Vision 2014 Sep 6 (pp. 49–64). Springer, Cham.
Arun, P.V., Buddhiraju, K.M.: A deep learning based spatial dependency modelling approach towards super-resolution. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2016 Jul 10 (pp. 6533–6536). IEEE.
Aymaz, S., Köse, C.: A novel image decomposition-based hybrid technique with super-resolution method for multi-focus image fusion. Information Fusion. 1(45), 113–127 (2019)
Yao, T., Luo, Y., Chen, Y., Yang, D., Zhao, L.: Single-image super-resolution: a survey. In International Conference in Communications, Signal Processing, and Systems 2018 Jul 14 (pp. 119–125). Springer, Singapore.
Khosravi, M.R., Basri, H., Rostami, H., Samadi, S.: distributed random cooperation for vbf-based routing in high-speed dense underwater acoustic sensor networks. J. Supercomput. 74(11), 6184–6200 (2018)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV) 2018 (pp. 286–301).
Kim, J., Kwon, L.J., Mu, L.K.: Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 1637–1645).
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)
Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In European conference on computer vision 2016 Oct 8 (pp. 391–407). Springer, Cham.
Timofte, R., De Smet, V., Van Gool, L.: A+: Adjusted anchored neighborhood regression for fast super-resolution. In Asian conference on computer vision 2014 Nov 1 (pp. 111–126). Springer, Cham.
Schulter, S., Leistner, C., Bischof, H.:Fast and accurate image upscaling with super-resolution forests. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015 (pp. 3791–3799).
Prabhakar, C.J., Kumar, P.U.: An image based technique for enhancement of underwater images. arXiv preprint, arXiv:1212.0291. 2012 Dec 3.
Ramadass, G.A., Ramesh, S., Selvakumar, J.M., Ramesh, R., Subramanian, A.N., Sathianarayanan, D., Harikrishnan, G., Muthukumaran, D., Jayakumar, V.K., Chandrasekaran, E., Murugesh, M.: Deep-ocean exploration using remotely operated vehicle at gas hydrate site in Krishna-Godavari basin, Bay of Bengal. Curr. Sci. 99(6), 809–815 (2010)
Srividhya, K., Ramya, M.M.: Accurate object recognition in the underwater images using learning algorithms and texture features. Multimed. Tools Appl. 76(24), 25679–25695 (2017)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)
Mobley, C.D.: Light and water: radiative transfer in natural waters. Academic press, Cambridge (1994)
Drews, P., Nascimento, E., Moraes, F., Botelho, S., Campos, M.: Transmission estimation in underwater single images. In Proceedings of the IEEE international conference on computer vision workshops 2013 (pp. 825–830).
Tarel, J.P., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In 2009 IEEE 12th International Conference on Computer Vision 2009 Sep 29 (pp. 2201–2208). IEEE.
Ancuti, C., Ancuti, C.O., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In 2012 IEEE Conference on Computer Vision and Pattern Recognition 2012 Jun 16 (pp. 81–88). IEEE.
Barbosa, W.V., Amaral, H.G., Rocha, T.L., Nascimento, E.R.: Visual-quality-driven learning for underwater vision enhancement. In 2018 25th IEEE International Conference on Image Processing (ICIP) 2018 Oct 7 (pp. 3933–3937). IEEE.
Hitam, M.S., Awalludin, E.A., Yussof, W.N., Bachok, Z.: Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In2013 International conference on computer applications technology (ICCAT) 2013 Jan 20 (pp. 1–5). IEEE.
Khosravi, M.R., Basri, H., Rostami, H.: Efficient routing for dense UWSNs with high-speed mobile nodes using spherical divisions. J. Supercomput. 74(2), 696–716 (2018)
Zhang, S., Wang, T., Dong, J., Yu, H.: Underwater image enhancement via extended multi-scale Retinex. Neurocomputing. 5(245), 1–9 (2017)
Mercado, M.A., Ishii, K., Ahn, J.: Deep-sea image enhancement using multi-scale retinex with reverse color loss for autonomous underwater vehicles. InOCEANS 2017-Anchorage 2017 Sep 18 (pp. 1–6). IEEE.
Torres-Méndez, L.A., Dudek, G.: Color correction of underwater images for aquatic robot inspection. InInternational Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition 2005 Nov 9 (pp. 60–73). Springer, Berlin, Heidelberg.
Petit, F., Capelle-Laizé, A.S., Carré, P.: Underwater image enhancement by attenuation inversionwith quaternions. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing 2009 Apr 19 (pp. 1177–1180). IEEE.
Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recogn. Lett. 24(11), 1663–1677 (2003)
Lu, H., Li, Y., Serikawa, S.: Single underwater image descattering and color correction. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2015 Apr 19 (pp. 1623–1627). IEEE.
Li, Y., Lu, H., Li, J., Li, X., Li, Y., Serikawa, S.: Underwater image de-scattering and classification by deep neural network. Comput. Electr. Eng. 1(54), 68–77 (2016)
Hollinger, G.A., Mitra, U., Sukhatme, G.S.: Active classification: Theory and application to underwater inspection. In Robotics Research 2017 (pp. 95–110). Springer, Cham.
Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Kendrick, G., Fisher, R.B.: Deep learning for coral classification. InHandbook of Neural Computation 2017 Jan 1 (pp. 383–401). Academic Press, Cambridge
Kim, J.H., Dowling, D.R.: Blind deconvolution of extended duration underwater signals. J. Acoust. Soc. Am. 135(4), 2200 (2014)
Lu, H., Li, Y., Hu, X., Yang, S., Serikawa, S.: Real-time underwater image contrast enhancement through guided filtering. In International Conference on Image and Graphics 2015 Aug 13 (pp. 137–147). Springer, Cham.
Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 3(1), 387–394 (2017)
Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)
Yang, J., Jiang, B., Lv, Z., Jiang, N.: A real-time image dehazing method considering dark channel and statistics features. J. Real-Time Image Proc. 13(3), 479–490 (2017)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
We have no conflict of interest to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Moghimi, M.K., Mohanna, F. Real-time underwater image resolution enhancement using super-resolution with deep convolutional neural networks. J Real-Time Image Proc 18, 1653–1667 (2021). https://doi.org/10.1007/s11554-020-01024-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-020-01024-4