Abstract
The Video Coding Joint Collaboration team (JCT-VC) has been working on an emerging standard for screen content coding (SCC) as an extension of high efficiency video coding (HEVC) standard known as HEVC-SCC. The two powerful coding mechanisms used in HEVC-SCC are intra block copy (IBC) and palette coding (PLT). These techniques achieve the best coding efficiency at the expense of extremely high computational complexity. Therefore, we propose a new technique to minimize computational complexity by skipping undesired modes and retaining coding efficiency. A fast intra mode decision approach is suggested based on efficient CU classification. Our proposed solution depends on categorizing a CU as a natural content block (NCB) or a screen content block (SCB). Two classifiers are used for the classification process. The first one is a neural network (NN) classifier, and the other is an AdaBoost classifier, which depends on a boosted decision stump algorithm. The two classifiers predict the CU type individually and the final decision for CU classification depends on both of them. The experimental results reveal that the suggested technique significantly decreases encoding time without sacrificing coding efficiency. The suggested framework can achieve a 26.13% encoding time reduction on average with just a 0.81% increase in Bjontegaard Delta bit-rate (BD-Rate). Furthermore, the suggested framework saves encoding time by 51.5% on average for a set of NC sequences recommended for standard HEVC tests with minimal performance degradation. The proposed strategy has been merged with an existing methodology to accelerate the process even further.
Similar content being viewed by others
References
Lu, Y., Li, S., Shen, H.: Virtualized screen: A third element for cloud-mobile convergence. IEEE Multimed. 18, 4–11 (2011)
Liu, S., Xu, X., Lei, S., Jou, K.: Overview of HEVC extensions on screen content coding. APSIPA Trans. Signal Inf. Process. (2015). https://doi.org/10.1017/ATSIP.2015.11
Xu, J., Joshi, R., Cohen, R.A.: Overview of the emerging HEVC screen content coding extension. IEEE Trans. Circuits Syst. Video Technol. 26, 50–62 (2016). https://doi.org/10.1109/TCSVT.2015.2478706
Peng, W.H., Walls, F.G., Cohen, R.A., Xu, J., Ostermann, J., MacInnis, A., Lin, T.: Overview of screen content video coding: technologies, standards, and beyond. IEEE. J. Emerg. Sel. Top. Circuits Syst. 6, 393–408 (2016). https://doi.org/10.1109/JETCAS.2016.2608971
Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012). https://doi.org/10.1109/TCSVT.2012.2221191
Budagavi, M., Kwon, D.K.: Intra motion compensation and entropy coding improvements for HEVC screen content coding. Pict. Coding Symp. (2013). https://doi.org/10.1109/PCS.2013.6737759
Zhu, W., Ding, W., Xu, J., Shi, Y., Yin, B.: 2-D dictionary based video coding for screen contents. Data Compress. Conf. Proc. (2014). https://doi.org/10.1109/DCC.2014.11
Tsang, S.H., Chan, Y.L., Siu, W.C.: Hash based fast local search for Intra Block Copy (IntraBC) mode in HEVC screen content coding. Asia-Pac. Signal Inf. Process. Assoc. Annu. Summit Conf. (2016). https://doi.org/10.1109/APSIPA.2015.7415302
Xu, X., Liu, S., Chuang, T.D., Huang, Y.W., Lei, S.M., Rapaka, K., Pang, C., Seregin, V., Wang, Y.K., Karczewicz, M.: Intra block copy in HEVC screen content coding extensions. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 409–419 (2016). https://doi.org/10.1109/JETCAS.2016.2597645
Xu, X., Liu, S., Chuang, T.D., Lei, S.: Block vector prediction for intra block copying in HEVC screen content coding. Data Compress. Conf. Proc. (2015). https://doi.org/10.1109/DCC.2015.22
Guo, L., Pu, W., Zou, F., Sole, J., Karczewicz, M., Joshi, R.: Color palette for screen content coding. IEEE Int. Conf. Image Process. (2014). https://doi.org/10.1109/ICIP.2014.7026124
Xiu, X., He, Y., Joshi, R., Karczewicz, M., Onno, P., Gisquet, C., Laroche, G.: Palette-based coding in the screen content coding extension of the HEVC standard. Data Compress. Conf. Proc (2015). https://doi.org/10.1109/DCC.2015.79
Pu, W., Karczewicz, M., Joshi, R., Seregin, V., Zou, F., Sole, J., Sun, Y.C., Chuang, T.D., Lai, P., Liu, S., Hsiang, S.T., Ye, J., Huang, Y.W.: Palette mode coding in HEVC screen content coding extension. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 420–432 (2016). https://doi.org/10.1109/JETCAS.2016.2605661
Kuang, W., Chan, Y.L., Tsang, S.H., Siu, W.C.: Machine learning-based fast intra mode decision for HEVC screen content coding via decision trees. IEEE Trans. Circuits Syst. Video Technol. 30, 1481–1496 (2020). https://doi.org/10.1109/TCSVT.2019.2903547
Duanmu, F., Ma, Z., Wang, Y.: Fast mode and partition decision using machine learning for intra-frame coding in HEVC screen content coding extension. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 517–531 (2016). https://doi.org/10.1109/JETCAS.2016.2597698
Huang, C., Peng, Z., Chen, F., Jiang, Q., Jiang, G., Hu, Q.: Efficient CU and PU decision based on neural network and gray level co-occurrence matrix for intra prediction of screen content coding. IEEE Access. 6, 46643–46655 (2018)
Kuang, W., Chan, Y.L., Tsang, S.H., Siu, W.C.: DeepSCC: Deep learning-based fast prediction network for screen content coding. IEEE Trans. Circuits Syst. Video Technol. 30, 1917–1932 (2020)
Laude, T., Ostermann, J.: Deep learning-based intra prediction mode decision for HEVC. Pict. Coding Symp. (2017). https://doi.org/10.1109/PCS.2016.7906399
Tsang, S.H., Chan, Y.L., Kuang, W.: Mode skipping for HEVC screen content coding via random forest. IEEE Trans. Multimed. 21, 2433–2446 (2019). https://doi.org/10.1109/TMM.2019.2907472
Yang, H., Shen, L., An, P.: Efficient screen content intra coding based on statistical learning. Signal Process. Image Commun. 62, 74–81 (2018). https://doi.org/10.1016/j.image.2017.12.001
Lu, Y., Liu, H., Lin, Y., Shen, L., Yin, H.: Efficient coding mode and partition decision for screen content intra coding. Signal Process. Image Commun. 68, 249–257 (2018). https://doi.org/10.1016/j.image.2018.08.008
Badry, E., Shalaby, A., Sayed, M.S.: Fast algorithm with palette mode skipping and splitting early termination for HEVC screen content coding. Midwest Symp. Circuits Syst. (2019). https://doi.org/10.1109/MWSCAS.2019.8885351
Badry, E., Shalaby, A., Sayed, M.S.: Intra mode decision acceleration for HEVC screen content coding. Proc. Int. Japan-Africa Conf. Electron. Commun. Comput. (2019). https://doi.org/10.1109/JAC-ECC48896.2019.9051167
Tsang, S.H., Chan, Y.L., Kuang, W., Siu, W.C.: Reduced-complexity intra block copy (IntraBC) mode with early CU splitting and pruning for HEVC screen content coding. IEEE Trans. Multimed. 21, 269–283 (2019). https://doi.org/10.1109/TMM.2018.2856078
Zhang, H., Zhou, Q., Shi, N., Yang, F., Feng, X., Ma, Z.: Fast intra mode decision and block matching for HEVC screen content compression. IEEE Int. Conf. Acoust. Speech Signal Process. (2016). https://doi.org/10.1109/ICASSP.2016.7471902
Tsang, S.H., Kuang, W., Chan, Y.L., Siu, W.C.: Fast HEVC screen content coding by skipping unnecessary checking of intra block copy mode based on CU activity and gradient. Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (2017). https://doi.org/10.1109/APSIPA.2016.7820900
Lei, J., Li, D., Pan, Z., Sun, Z., Kwong, S., Hou, C.: Fast intra prediction based on content property analysis for low complexity HEVC-based screen content coding. IEEE Trans. Broadcast. 63, 48–58 (2017). https://doi.org/10.1109/TBC.2016.2623241
Elsawy, N., Sayed, M.S., Farag, F.: Mode skipping for screen content coding based on neural network classifier. J Real-Time Image Proc 18, 2453–2468 (2021). https://doi.org/10.1007/s11554-021-01137-4
Sullivan, G., Ohm, J.-R.: Common test conditions for screen content coding. document, JCTVC-U1015, Oct. (2015)
HEVC test model version 16.18 screen content model version 8.7. [Online]. (2021). https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.18+SCM-8.7/. Accessed 14 May 2021.
Liu, X., Li, Y., Liu, D., Wang, P., Yang, L.T.: An adaptive CU size decision algorithm for HEVC intra prediction based on complexity classification using machine learning. IEEE Trans. Circuits Syst. Video Technol. 29, 144–155 (2019)
Schapire, R.E.: The boosting approach to machine learning: an overview. In: Denison, D.D., Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B. (eds.) Nonlinear estimation and classification, pp. 149–171. Springer, New York (2003)
Bakkouri, S., Elyousfi, A.: Machine learning-based fast CU size decision algorithm for 3D-HEVC inter-coding. J. Real-Time Image Process. (2021). https://doi.org/10.1007/s11554-020-01059-7
Bjontegaard, G.: Calculation of average PSNE differences between R-D Curves, document VCEG-M33, ITU-T VCEG (2001)
Kuang, W., Chan, Y.L., Tsang, S.H., Siu, W.C.: Fast HEVC to SCC transcoder by early CU partitioning termination and decision tree-based flexible mode decision for intra-frame coding. IEEE Access. 7, 8773–8788 (2019). https://doi.org/10.1109/ACCESS.2018.2890720
Bossen, F.: Common Test Conditions. Doc. JCTVC-H1100 (2012)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Elsawy, N., Sayed, M.S. & Farag, F. Efficient coding unit classifier for HEVC screen content coding based on machine learning. J Real-Time Image Proc 19, 375–390 (2022). https://doi.org/10.1007/s11554-021-01189-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-021-01189-6