Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An efficient image steganographic scheme for a real-time embedded system and its hardware implementation on AMD Xilinx Zynq-7000 APSoC platform

  • Research
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

As a pivotal advance in the field of information security, steganography holds a crucial place in concealing sensitive information. It is the technique of hiding secret data within a digital media carrier, such as an image. An image steganographic scheme conceals secret data in a digital image by manipulating pixel values in a way that the data is undetectable to unauthorized parties in communication channels. These schemes are widely used for various real-time applications, including but not limited to content authentication, copyright protection, and biometric data protection. To effectively process image steganographic schemes in real-time applications, it is important to reduce computational delay and increase throughput. Implementing these schemes on a reconfigurable hardware platform is an efficient way to achieve these tasks. In this paper, we present a reconfigurable embedded system for an efficient steganographic scheme that embeds and recovers secret data in digital images using the AMD Xilinx Zynq-7000 all programmable system-on-chip (APSoC) platform. The system demonstrates real-time processing capabilities, delivering a frame rate of 30.7 FPS for a full high-definition RGB image, surpassing recent hardware implementations in terms of speed, resource utilization, and system throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Amd xilinx: 7 series FPGAs data sheet: overview (DS180) (Accessed 03 April 2022). https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview

  2. An introduction to AMBA AXI (Accessed 04 July 2022). https://developer.arm.com/documentation/102202/0200/AXI-protocol-overview

  3. Exchangeable image file format - an overview | ScienceDirect Topics (Accessed 06 August 2022). https://www.sciencedirect.com/topics/computer-science/exchangeable-image-file-format

  4. EXIF tags (Accessed 14 May 2022). https://exiftool.org/TagNames/EXIF.html

  5. HTTP archive (Accessed 27 May 2022). https://httparchive.org/

  6. Alarood, A., Ababneh, N., Al-Khasawneh, M., Rawashdeh, M., Al-Omari, M.: IoTSteg: ensuring privacy and authenticity in internet of things networks using weighted pixels classification based image steganography. Clust. Comput. 25(3), 1607–1618 (2022)

    Article  Google Scholar 

  7. Ayyappan, S., Lakshmi, C., Menon, V.: A secure reversible data hiding and encryption system for embedding EPR in medical images. Curr. Signal Transduct. Ther. 15(2), 124–135 (2020)

    Article  Google Scholar 

  8. Biookaghazadeh, S., Zhao, M., Ren, F.: Are FPGAs suitable for edge computing? In USENIX workshop on hot topics in edge computing (2018)

  9. Chao, R.M., Wu, H.C., Lee, C.C., Chu, Y.P.: A novel image data hiding scheme with diamond encoding. EURASIP J. Inf. Secur. 2009(1), 1–9 (2009)

    Google Scholar 

  10. Elharrouss, O., Almaadeed, N., Al-Maadeed, S.: An image steganography approach based on k-least significant bits (k-LSB). In: 2020 IEEE international conference on informatics, IoT, and enabling technologies (ICIoT), pp. 131–135 (2020)

  11. HajiRassouliha, A., Taberner, A.J., Nash, M.P., Nielsen, P.M.F.: Suitability of recent hardware accelerators (DSPs, FPGAs, and GPUs) for computer vision and image processing algorithms. Signal Process. Image Commun. 68, 101–119 (2018)

    Article  Google Scholar 

  12. Hassaballah, M.: Digital media steganography: principles, algorithms, and advances. Academic Press (2020)

  13. Hassan, F.S., Gutub, A.: Efficient image reversible data hiding technique based on interpolation optimization. Arab. J. Sci. Eng. 46(9), 8441–8456 (2021)

    Article  Google Scholar 

  14. Hussain, M., Wahab, A.W.A., Idris, Y.I.B., Ho, A.T.S., Jung, K.H.: Image steganography in spatial domain: a survey. Signal Process. Image Commun. 65, 46–66 (2018)

    Article  Google Scholar 

  15. Kumar, R., Jung, K.H.: Robust reversible data hiding scheme based on two-layer embedding strategy. Inf. Sci. 512, 96–107 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuo, W.C., Wang, C.C., Hou, H.C.: Signed digit data hiding scheme. Inf. Process. Lett. 116(2), 183–191 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leng, H.S., Lee, J.F., Tseng, H.W.: A high payload EMD-based steganographic method using two extraction functions. Digital Signal Process. 113, 103026 (2021)

    Article  Google Scholar 

  18. Liu, Y.X., Yang, C.N., Sun, Q.D., Wu, S.Y., Lin, S.S., Chou, Y.S.: Enhanced embedding capacity for the SMSD-based data-hiding method. Signal Process. Image Commun. 78, 216–222 (2019)

    Article  Google Scholar 

  19. Lu, T.C.: Interpolation-based hiding scheme using the modulus function and re-encoding strategy. Signal Process. 142, 244–259 (2018)

    Article  Google Scholar 

  20. Martelli, M., Dang, M., Seph, T.: Defining chaos. Math. Mag. 71(2), 112–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Menaka, D.R., Janarthanan, D.R., Deeba, D.K.: FPGA implementation of low power and high speed image edge detection algorithm. Microprocess. Microsyst. 75, 103053 (2020)

    Article  Google Scholar 

  22. Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of applied cryptography. CRC Press, Boca Raton (2020)

    MATH  Google Scholar 

  23. Nawrocki, P., Pajor, J., Sniezynski, B., Kolodziej, J.: Modeling adaptive security-aware task allocation in mobile cloud computing. Simul. Model. Pract. Theor. 116, 102491 (2022)

    Article  Google Scholar 

  24. Phadikar, A., Maity, G.K., Chiu, T.L., Mandal, H.: FPGA implementation of lifting-based data hiding scheme for efficient quality access control of images. Circuits Syst. Signal Process. 38(2), 847–873 (2019)

    Article  Google Scholar 

  25. Qasaimeh, M., Denolf, K., Lo, J., Vissers, K., Zambreno, J., Jones, P.H.: Comparing energy efficiency of CPU, GPU and FPGA implementations for vision kernels. In: 2019 IEEE international conference on embedded software and systems (ICESS), pp. 1–8 (2019)

  26. Qu, Z., Cheng, Z., Liu, W., Wang, X.: A novel quantum image steganography algorithm based on exploiting modification direction. Multimed. Tools Appl. 78(7), 7981–8001 (2019)

    Article  Google Scholar 

  27. Ramalingam, B., Amirtharajan, R., Rayappan, J.B.B.: Stego on FPGA: An IWT approach. Sci. World J. : e192512 (2014). Publisher, Hindawi (2014)

  28. Saha, S., Chakraborty, A., Chatterjee, A., Dhargupta, S., Ghosal, S.K., Sarkar, R.: Extended exploiting modification direction based steganography using hashed-weightage array. Multimed. Tools Appl. 79(29), 20973–20993 (2020)

    Article  Google Scholar 

  29. Sathish Shet, K., Aswath, A.R., Hanumantharaju, M.C., Gao, X.Z.: Design and development of new reconfigurable architectures for LSB/multi-bit image steganography system. Multimed. Tools Appl. 76(11), 13197–13219 (2017)

    Article  Google Scholar 

  30. Schneier, B.: Applied cryptography: protocols, algorithms, and source code in C. Wiley, India (2007)

    MATH  Google Scholar 

  31. Seyed Dizaji, S.H., Zolfy Lighvan, M., Sadeghi, A.: Hardware-based parallelism scheme for image steganography speed up. In: Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A. (eds.) International conference on innovative computing and communications, advances in intelligent systems and computing, pp. 225–236. Springer, Singapore (2021)

    Chapter  Google Scholar 

  32. Shaik, A., V, T.: High capacity reversible data hiding using 2D parabolic interpolation. Multimed. Tools Appl. 78(8), 9717–9735 (2019)

    Article  Google Scholar 

  33. Shet, K.S., Aswath, A.R., Hanumantharaju, M.C., Gao, X.Z.: Novel high-speed reconfigurable FPGA architectures for EMD-based image steganography. Multimed. Tools Appl. 78(13), 18309–18338 (2019)

    Article  Google Scholar 

  34. Shivani, S., Patel, S.C., Arora, V., Sharma, B., Jolfaei, A., Srivastava, G.: Real-time cheating immune secret sharing for remote sensing images. J. Real-time Image Process. 18(5), 1493–1508 (2021)

    Article  Google Scholar 

  35. Sinha, S., Goyal, N.K., Mall, R.: Reliability and availability prediction of embedded systems based on environment modeling and simulation. Simul. Model. Pract. Theor. 108, 102246 (2021)

    Article  Google Scholar 

  36. Sinha Roy, S., Basu, A., Chattopadhyay, A., Das, T.S.: Implementation of image copyright protection tool using hardware-software co-simulation. Multimed. Tools Appl. 80(3), 4263–4277 (2021)

    Article  Google Scholar 

  37. Spagnolo, F., Perri, S., Corsonello, P.: Design of a real-time face detection architecture for heterogeneous systems-on-chips. Integration 74, 1–10 (2020)

    Article  Google Scholar 

  38. Standard, I.: Extensible metadata platform (XMP), ISO 16684-1:2012 (Accessed 27 April 2022)

  39. Sun, J..y, Cai, H., Gao, Z..b, Wang, C..p, Zhang, H.: A novel non-equilibrium hyperchaotic system and application on color image steganography with FPGA implementation. Nonlinear Dyn. 111(4), 3851–3868 (2023)

    Article  Google Scholar 

  40. Tyagi, S., Anurag, P., Pai, S.N.: Multilevel steganography for data protection. In: Hu, Y.C., Tiwari, S., Mishra, K.K., Trivedi, M.C. (eds.) Ambient communications and computer systems, advances in intelligent systems and computing, pp. 461–472. Springer, Singapore (2019)

    Chapter  Google Scholar 

  41. Wang, X., Li, C., Song, J.: Motion image processing system based on multi core FPGA processor and convolutional neural Network. Microprocess. Microsyst. 82, 103923 (2021)

    Article  Google Scholar 

  42. Wei, J., Quan, Z., Hu, Y., Liu, J., Zhang, H., Liu, M.: Implementing a low-complexity steganography system on FPGA. In: 2021 9th international conference on intelligent computing and wireless optical communications (ICWOC), pp. 64–68 (2021)

  43. Wu, F., Zhou, X., Chen, Z., Yang, B.: A reversible data hiding scheme for encrypted images with pixel difference encoding. Knowledge-Based Syst. 234, 107583 (2021)

    Article  Google Scholar 

  44. Zhang, R., Lu, C., Liu, J.: A high capacity reversible data hiding scheme for encrypted covers based on histogram shifting. J. Inf. Secur. Appl. 47, 199–207 (2019)

    Google Scholar 

  45. Zhang, X., Long, J., Wang, Z., Cheng, H.: Lossless and reversible data hiding in encrypted images with public-key cryptography. IEEE Trans. Circuits Syst. Video Technol. 26(9), 1622–1631 (2016)

    Article  Google Scholar 

  46. Zhang, X., Wang, S.: Efficient steganographic embedding by exploiting modification direction. IEEE Commun. Lett. 10(11), 781–783 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada and in part by the Regroupement Strategique en Microelectronique du Quebec (ReSMiQ).

Author information

Authors and Affiliations

Authors

Contributions

All the authors conceived the idea. SH developed the theory and performed the experiments. All the authors verified the analytical methods, discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to M. Omair Ahmad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harb, S., Ahmad, M.O. & Swamy, M.N.S. An efficient image steganographic scheme for a real-time embedded system and its hardware implementation on AMD Xilinx Zynq-7000 APSoC platform. J Real-Time Image Proc 20, 46 (2023). https://doi.org/10.1007/s11554-023-01302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11554-023-01302-x

Keywords