Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Automated detection of schizophrenia using optimal wavelet-based \(l_1\) norm features extracted from single-channel EEG

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Schizophrenia (SZ) is a mental disorder, which affects the ability of human thinking, memory, and way of living. Manual screening of SZ patients is tedious, laborious and prone to human errors. Hence, we developed a computer-aided diagnosis (CAD) system to diagnose SZ patients accurately using single-channel electroencephalogram (EEG) signals. The EEG signals are nonlinear and non-stationary. Hence, we have used wavelet-based features to capture the hidden non-stationary nature present in the signal. First, the EEG signals are subjected to the the wavelet decomposition through six iterations, which yields seven sub-bands. The \(l_1\) norm is computed for each sub-band. The extracted norm features are disseminated to various classification algorithms. We have obtained the highest accuracy of 99.21% and 97.2% using K-nearest neighbor classifiers with ten-fold and leave-one-subject-out cross-validations. The developed single-channel EEG wavelet-based CAD model can help the clinicians to confirm the outcome of their manual screening and obtain an accurate diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acharya UR, Sree SV, Ang PCA, Yanti R, Suri JS (2012) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22(02):1250002

    Article  PubMed  Google Scholar 

  • Acharya UR, Sudarshan VK, Adeli H, Santhosh J, Koh JE, Adeli A (2015) Computer-aided diagnosis of depression using EEG signals. Eur Neurol 73(5–6):329–336

    Article  PubMed  Google Scholar 

  • Acharya UR, Fujita H, Oh SL, Raghavendra U, Tan JH, Adam M, Gertych A, Hagiwara Y (2018a) Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Gener Comput Syst 79:952–959

    Article  Google Scholar 

  • Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H (2018b) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278

    Article  PubMed  Google Scholar 

  • Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP (2018c) Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 161:103–113

    Article  PubMed  Google Scholar 

  • Akar SA, Kara S, Latifoğlu F, Bilgiç V (2012) Wavelet-welch methodology for analysis of EEG signals of schizophrenia patients. In: 2012 Cairo international biomedical engineering conference (CIBEC), pp 6–9

  • Bhati D, Sharma M, Pachori RB, Nair SS, Gadre VM (2016) Design of time-frequency optimal three-band wavelet filter banks with unit sobolev regularity using frequency domain sampling. Circuits Syst Signal Process 35(12):4501–4531

    Article  Google Scholar 

  • Bhurane AA, Dhok S, Sharma M, Yuvaraj R, Murugappan M, Acharya UR (2019a) Diagnosis of Parkinson's disease from electroencephalography signals using linear and self-similarity features. Expert Syst 13:e12472

    Google Scholar 

  • Bhurane AA, Sharma M, San-Tan R, Acharya UR (2019b) An efficient detection of congestive heart failure using frequency localized filter banks for the diagnosis with ecg signals. Cogn Syst Res 55:82–94

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets, vol 61. Siam, Philadelphia

    Book  Google Scholar 

  • De Winter JC (2013) Using the student’s t-test with extremely small sample sizes. Pract Assess Res Eval 18(1):10

    Google Scholar 

  • Devijver P, Kittler J (1982) Pattern recognition: a statistical approach. Prentice/Hall International, Upper Saddle River

    Google Scholar 

  • Dhok S, Pimpalkhute V, Chandurkar A, Bhurane AA, Sharma M, Acharya UR (2020) Automated phase classification in cyclic alternating patterns in sleep stages using Wigner–Ville distribution based features. Comput Biol Med 119:103691

    Article  PubMed  Google Scholar 

  • Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40(2):139–157

    Article  Google Scholar 

  • Dvey-Aharon Z, Fogelson N, Peled A, Intrator N (2015) Schizophrenia detection and classification by advanced analysis of EEG recordings using a single electrode approach. PLoS ONE 10(4):e0123033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fushiki T (2011) Estimation of prediction error by using k-fold cross-validation. Stat Comput 21(2):137–146

    Article  Google Scholar 

  • Gudigar A, Raghavendra U, San TR, Ciaccio EJ, Acharya UR (2019) Application of multiresolution analysis for automated detection of brain abnormality using MR images: a comparative study. Future Gener Comput Syst 90:359–367

    Article  Google Scholar 

  • Ibáñez-Molina AJ, Lozano V, Soriano MF, Aznarte JI, Gómez-Ariza CJ, Bajo M (2018) Eeg multiscale complexity in schizophrenia during picture naming. Front Physiol 9:1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Johannesen JK, Bi J, Jiang R, Kenney JG, Chen C-MA (2016) Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiat Electrophysiol 2(1):3

    Article  Google Scholar 

  • Kim JW, Lee YS, Han DH, Min KJ, Lee J, Lee K (2015) Diagnostic utility of quantitative EEG in un-medicated schizophrenia. Neurosci Lett 589:126–131

    Article  CAS  PubMed  Google Scholar 

  • Laursen T, Nordentoft M, Brøbech P (2013) Excess early mortality in schizophrenia. Annu Rev Clin Psychol 10:425–448

    Article  PubMed  Google Scholar 

  • Li Y, Tong S, Liu D, Gai Y, Wang X, Wang J, Qiu Y, Zhu Y (2008) Abnormal EEG complexity in patients with schizophrenia and depression. Clin Neurophysiol 119(6):1232–1241

    Article  PubMed  Google Scholar 

  • Moulin P, Anitescu M, Kortanek KO, Potra FA (1997) The role of linear semi-infinite programming in signal-adapted qmf bank design. IEEE Trans Signal Process 45(9):2160–2174

    Article  Google Scholar 

  • Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR (2018a) A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl 32:10927–10933https://doi.org/10.1007/s00521-018-3689-5

    Article  Google Scholar 

  • Oh SL, Ng EY, San Tan R, Acharya UR (2018b) Automated diagnosis of arrhythmia using combination of cnn and lstm techniques with variable length heart beats. Comput Biol Med 102:278–287

    Article  PubMed  Google Scholar 

  • Oh SL, Vicnesh J, Ciaccio EJ, Yuvaraj R, Acharya UR (2019) Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals. Appl Sci 9(14):2870

    Article  Google Scholar 

  • Olejarczyk E, Jernajczyk W (2017) Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE 12(11):e0188629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajendra SK, Shrimali M, Doshi S, Sharma M (2018) Detection of power transformer winding faults using orthogonal wavelet filter bank, pp 431–436

  • Rajput JS, Sharma M, Acharya UR (2019) Hypertension diagnosis index for discrimination of high-risk hypertension ecg signals using optimal orthogonal wavelet filter bank. Int J Environ Res Public Health 16(21):4068

    Article  PubMed Central  Google Scholar 

  • Santos-Mayo L, San-José-Revuelta LM, Arribas JI (2016) A computer-aided diagnosis system with EEG based on the p3b wave during an auditory odd-ball task in schizophrenia. IEEE Trans Biomed Eng 64(2):395–407

    Article  Google Scholar 

  • Shah S, Sharma M, Deb D, Pachori, RB (2019) An automated alcoholism detection using orthogonal wavelet filter bank. In: 2019 International conference on machine intelligence and signal analysis advances in intelligent systems and computing, vol 748. Springer, Singapore, pp 473–483

  • Sharma M, Acharya UR (2018) Analysis of knee-joint vibroarthographic signals using bandwidth-duration localized three-channel filter bank. Comput Electr Eng 72:191–202

    Article  Google Scholar 

  • Sharma M, Acharya UR (2019) A new method to identify coronary artery disease with ecg signals and time–frequency concentrated antisymmetric biorthogonal wavelet filter bank. Pattern Recognit Lett 125:235–240

    Article  Google Scholar 

  • Sharma M, Pachori RB (2017) A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension. J Mech Med Biol 17(07):1740003

    Article  Google Scholar 

  • Sharma M, Kolte R, Patwardhan P, Gadre V (2010) Time–frequency localization optimized biorthogonal wavelets. In: International conference on signal processing and communications (SPCOM) 2010, pp 1–5

  • Sharma M, Singh T, Bhati D, Gadre V (2014) Design of two-channel linear phase biorthogonal wavelet filter banks via convex optimization. In: 2014 International conference on signal processing and communications (SPCOM), pp 1–6

  • Sharma M, Gadre VM, Porwal S (2015) An eigenfilter-based approach to the design of time-frequency localization optimized two-channel linear phase biorthogonal filter banks. Circuits Syst Signal Process 34(3):931–959

    Article  Google Scholar 

  • Sharma M, Bhati D, Pillai S, Pachori RB, Gadre VM (2016) Design of time-frequency localized filter banks: transforming non-convex problem into convex via semidefinite relaxation technique. Circuits Syst Signal Process 35(10):3716–3733

    Article  Google Scholar 

  • Sharma M, Achuth PV, Pachori RB, Gadre VM (2017a) A parametrization technique to design joint time-frequency optimized discrete-time biorthogonal wavelet bases. Signal Process 135:107–120

    Article  Google Scholar 

  • Sharma M, Dhere A, Pachori RB, Acharya UR (2017b) An automatic detection of focal EEG signals using new class of time-frequency localized orthogonal wavelet filter banks. Knowl Based Syst 118:217–227

    Article  Google Scholar 

  • Sharma M, Dhere A, Pachori RB, Gadre VM (2017c) Optimal duration-bandwidth localized antisymmetric biorthogonal wavelet filters. Signal Process 134:87–99

    Article  Google Scholar 

  • Sharma M, Pachori RB, Acharya UR (2017d) A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit Lett 94:172–179

    Article  Google Scholar 

  • Sharma M, Achuth P, Deb D, Puthankattil SD, Acharya UR (2018a) An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cogn Syst Res 52:508–520

    Article  Google Scholar 

  • Sharma M, Agarwal S, Acharya UR (2018b) Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ecg signals. Comput Biol Med 100:100–113

    Article  PubMed  Google Scholar 

  • Sharma M, Bhurane AA, Acharya UR (2018c) MMSFL-OWFB: a novel class of orthogonal wavelet filters for epileptic seizure detection. Knowl Based Syst 160:265–277

    Article  Google Scholar 

  • Sharma M, Goyal D, Achuth P, Acharya UR (2018d) An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Comput Biol Med 98:58–75

    Article  PubMed  Google Scholar 

  • Sharma M, Sharma P, Pachori RB, Acharya UR (2018e) Dual-tree complex wavelet transform-based features for automated alcoholism identification. Int J Fuzzy Syst 20(5):1297–1308

    Article  Google Scholar 

  • Sharma M, Tan RS, Acharya UR (2018f) A novel automated diagnostic system for classification of myocardial infarction ecg signals using an optimal biorthogonal filter bank. Comput Biol Med 102:341–356

    Article  PubMed  Google Scholar 

  • Sharma M, Patel S, Choudhary S, Acharya UR (2019a) Automated detection of sleep stages using energy-localized orthogonal wavelet filter banks. Arab J Sci Eng 45:2531–2544

    Article  Google Scholar 

  • Sharma M, Raval M, Acharya UR (2019b) A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ecg signals. Inform Med Unlocked 16:100170

    Article  Google Scholar 

  • Sharma M, Sing S, Kumar A, Tan RS, Acharya UR (2019c) Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ecg features. Comput Biol Med 115:103446

    Article  PubMed  Google Scholar 

  • Sharma M, Tan R-S, Acharya UR (2019d) Automated heartbeat classification and detection of arrhythmia using optimal orthogonal wavelet filters. Inform Med Unlocked 16:100221

    Article  Google Scholar 

  • Sharma M, Tan R-S, Acharya UR (2019e) Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters. Neural Comput Appl 32:15869–15884

    Article  Google Scholar 

  • Sharma M, Patel S, Acharya UR (2020) Automated detection of abnormal EEG signals using localized wavelet filter banks. Pattern Recognit Lett 133:188–194

    Article  Google Scholar 

  • Siuly S, Khare SK, Bajaj V, Wang H, Zhang Y (2020) A computerized method for automatic detection of schizophrenia using EEG signals. IEEE Trans Neural Syst Rehabil Eng 28(11):2390–2400

    Article  PubMed  Google Scholar 

  • Subudhi A, Acharya UR, Dash M, Jena S, Sabut S (2018) Automated approach for detection of ischemic stroke using delaunay triangulation in brain mri images. Comput Biol Med 103:116–129

    Article  PubMed  Google Scholar 

  • Sun S, Zhang C, Zhang D (2007) An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognit Lett 28(15):2157–2163

    Article  Google Scholar 

  • Talo M, Baloglu UB, Yıldırım Ö, Acharya UR (2019) Application of deep transfer learning for automated brain abnormality classification using mr images. Cogn Syst Res 54:176–188

    Article  Google Scholar 

  • Tay DB, Lin Z, Murugesan S (2014) Orthogonal wavelet filters with minimum RMS bandwidth. IEEE Signal Process Lett 21(7):819–823

    Article  Google Scholar 

  • Tomioka R, Aihara K, Müller K-R (2007) Logistic regression for single trial EEG classification. Adv Neural Inf Process Syst 19:1377–1384

    Google Scholar 

  • Tripathy R, Acharya UR (2018) Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework. Biocybern Biomed Eng 38(4):890–902

    Article  Google Scholar 

  • Vetterli M, Herley C (1992) Wavelets and filter banks: theory and design. IEEE Trans Signal Process 40:2207–2232

    Article  Google Scholar 

  • Vicnesh J, Oh SL, Rajinikanth V, Ciaccio E, Cheong K, Arunkumar Acharya UR (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698

    Article  Google Scholar 

  • Virdi P, Narayan Y, Kumari P, Mathew L (2016, July). Discrete wavelet packet based elbow movement classification using fine Gaussian SVM. In: 2016 IEEE 1st international conference on power electronics, intelligent control and energy systems (ICPEICES), pp 1–5

  • Wang H, Lu X, Hu Z, Zheng W (2014) Fisher discriminant analysis with l1-norm. IEEE Trans Cybern 44(6):828–842

    Article  PubMed  Google Scholar 

  • Xu Y, Zhu Q, Fan Z, Qiu M, Chen Y, Liu H (2013) Coarse to fine k nearest neighbor classifier. Pattern Recognit Lett 34(9):980–986

    Article  Google Scholar 

  • Yıldırım Ö, Baloglu UB, Acharya UR (2018) A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput Appl 32:15857–15868

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Acharya, U.R. Automated detection of schizophrenia using optimal wavelet-based \(l_1\) norm features extracted from single-channel EEG. Cogn Neurodyn 15, 661–674 (2021). https://doi.org/10.1007/s11571-020-09655-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09655-w

Keywords