Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Electrochemical performance of Mg-air batteries based on AZ series magnesium alloys

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The purpose of this study is to select a common commercial Mg alloy to function as an anode for Mg-air batteries, with low anode passivation and minimal hydrogen evolution-induced corrosion being desirable characteristics. Corrosion and discharge performance of 3N5 Mg, AZ31, AZ61, and AZ91 alloys was studied. Corrosion susceptibility decreases and anode utilization factor gradually increases with Al content for the 3N5 Mg, AZ31, and AZ61 alloys. The key factors for these results are associated with the Mg17Al12 phase, which can act as a barrier to prevent the self-peeling of discharge products. For the AZ91 alloy, the addition of about 9 wt% Al drastically increases discharge activation. Electrochemical impedance spectroscopy and scanning electron microscopy support the results of electrochemical and discharge performance tests. Therefore, AZ61 alloy is the best-suited anode material for the Mg-air batteries in the 0.6 M NaCl electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192

    Article  CAS  PubMed  Google Scholar 

  2. Xiong HQ, Zhu HL, Luo J, Yu K, Shi CL, Fang HJ, Zhang Y (2017) Effects of heat treatment on the discharge behavior of Mg-6wt.%Al-1wt.%Sn alloy as anode for magnesium-air batteries. J Mater Eng Perf 26:2901–2911

    Article  CAS  Google Scholar 

  3. Zheng TX, Hu YB, Zhang YX (2018) Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Mater Des 137:245–255

    Article  CAS  Google Scholar 

  4. Xiong HQ, Yu K, Yin X (2017) Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery. J Alloys Compd 708:652–661

    Article  CAS  Google Scholar 

  5. Yuasa M, Huang XS, Suzuki KK, Mabuchi M, Chino Y (2014) Effects of Microstructure on Discharge Behavior of AZ91 Alloy as Anode for Mg–Air Battery. Mater Trans 55:1202–1207

    Article  CAS  Google Scholar 

  6. Yan YJ, Daniel G, Cristina PG (2017) Investigating discharge performance and Mg interphase properties of an Ionic Liquid electrolyte based Mg-air battery. Electrochim Acta 235:270–279

    Article  CAS  Google Scholar 

  7. Li XD, Lu HM, Yuan SQ (2017) Performance of Mg–9Al–1In alloy as anodes for Mg-air batteries in 3.5 wt% NaCl solutions. J Electrochem Soc 164:A3131–A3137

    Article  CAS  Google Scholar 

  8. Law YT, Schnaidt J, Brimaud S (2016) Oxygen reduction and evolution in an ionic liquid ([BMP][TFSA]) based electrolyte: a model study of the cathode reactions in Mg-air batteries. J Power Sources 333:173–183

    Article  CAS  Google Scholar 

  9. Ma YB, Li N, Li DY, Zhang ML, Huang XM (2011) Performance of Mg–14Li–1Al–0.1Ce as anode for Mg-air battery. J Power Sources 196:2346–2350

    Article  CAS  Google Scholar 

  10. Yuasa M, Huang X, Suzuki K, Mabuchi M, Chino Y (2015) Discharge properties of Mg–Al–Mn–Ca and Mg–Al–Mn alloys as anode materials for primary magnesium–air batteries. J Power Sources 297:449–456

    Article  CAS  Google Scholar 

  11. Cao D, Wu L, Wang G, Lv Y (2008) Electrochemical oxidation behavior of Mg–Li–Al–Ce–Zn and Mg–Li–Al–Ce–Zn–Mn in sodium chloride solution. J Power Sources 183:799–804

    Article  CAS  Google Scholar 

  12. Wang N, Wang R, Peng C, Feng Y (2014) Enhancement of the discharge performance of AP65 magnesium alloy anodes by hot extrusion. Corros Sci 81:85–95

    Article  CAS  Google Scholar 

  13. Wang N, Wang R, Peng C, Feng Y, Chen B (2012) Effect of hot rolling and subsequent annealing on electrochemical discharge behavior of AP65 magnesium alloy as anode for seawater activated battery. Corros Sci 64:17–27

    Article  CAS  Google Scholar 

  14. Feng Y, Wang R, Peng C, Qiu K, Wang N, Zhang C, Zhang J (2010) Corros Sci 52:3474–3480

    Article  CAS  Google Scholar 

  15. Feng Y, Wang R, Peng C (2013) Influence of Ga and In on microstructure and electrochemical properties of Mg anodes. Nonferrous Met Soc China 23:2650–2656

    Article  CAS  Google Scholar 

  16. Wang N, Wang R, Peng C, Feng Y (2012) Effect of manganese on discharge and corrosion performance of magnesium alloy AP65 as anode for seawater-activated battery. Corrosion 68:388–397

    Article  CAS  Google Scholar 

  17. Lv Y, Liu M, Xu Y, Cao D, Feng J (2013) The electrochemical behaviors of Mg–8Li–3Al–0.5Zn and Mg–8Li–3Al–1.0Zn in sodium chloride solution. J Power Sources 225:124–128

    Article  CAS  Google Scholar 

  18. Huang G, Zhao Y, Wang Y, Zhang H, Pan F (2013) Performance of Mg–air battery based on AZ31 alloy sheet with twins. Mater Lett 113:46–49

    Article  CAS  Google Scholar 

  19. Zhao J, Yu K, Hu Y, Li S, Tan X, Chen F, Yu Z (2011) Electrochim. Acta 56:8224–8231

    Article  CAS  Google Scholar 

  20. Lv Y, Xu Y, Cao D (2011) The electrochemical behaviors of Mg, Mg–Li–Al–Ce and Mg–Li–Al–Ce–Y in sodium chloride solution. J Power Sources 196:8809–8814

    Article  CAS  Google Scholar 

  21. Yu K, Huang Q, Zhao J, Dai Y (2012) Electrochemical properties of magnesium alloy anodes discharged in seawater. T Nonferr Metal Soc 22:2184–2190

    Article  CAS  Google Scholar 

  22. N.G. Wang, Y.C. Mu, Q. Li, Z.C. Shi. RSC Adv, 7 (2017) 53226–53235, Discharge and corrosion behaviour of AP65 magnesium anode plates with different rolling reductions

  23. Wang N, Wang R, Peng C, Peng B, Feng Y, Hu C (2014) Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery. Electrochim. Acta 149:193–205

    Article  CAS  Google Scholar 

  24. Umoren SA, Li Y, Wang FH (2011) Effect of aluminium microstructure on corrosion and inhibiting effect of polyacrylic acid in H2SO4 solution. J Appl Electrochem 41:307–315

    Article  CAS  Google Scholar 

  25. Zhao C, Huang GS, Zhang C (2018) Rare Metal Mater Eng 7:1064–1068

    Google Scholar 

  26. Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Feliú S (2008) Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochim Acta 53:7890–7902

    Article  CAS  Google Scholar 

  27. Song G (2009) Effect of tin modification on corrosion of AM70 magnesium alloy. Corros Sci 51:2063–2070

    Article  CAS  Google Scholar 

  28. Song G, Bowles AL, StJohn DH (2004) Corrosion resistance of aged die cast magnesium alloy AZ91D. Mater Sci Eng A 366:74–86

    Article  CAS  Google Scholar 

  29. Yuan S, Lu H, Sun Z, Fan L, Zhu X, Zhang W (2016) Electrochemical performance of Mg-3Al modified with Ga, In and Sn as anodes for Mg-air battery. J Electrochem Soc 163:A1181–A1187

    Article  CAS  Google Scholar 

  30. G.L. Song, A. Atrens, X.N. Wu, B. Zhang. Corros Sci, 40 (1998) 1769–1791, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride

  31. Moutarlier V, Gigandet MP, Normand B, Pagetti J (2005) EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species. Corros Sci 47:937–945

    Article  CAS  Google Scholar 

  32. Chen X, Tian WM, Li SM, Yu M, Liu JH (2016) Chin J Aeronautics 29:114–120

    Google Scholar 

  33. Dornbusch DA, Hilton R, Gordon MJ, Suppes GJ (2013) ECS Electrochem. Lett 2(9):A89–A95

    Article  CAS  Google Scholar 

  34. Bethencourt M, Botana FJ, Cano MJ, Marcos M, Sánchez-Amaya JM, González-Rovira L (2008) Using EIS to analyse samples of Al–Mg alloy AA5083 treated by thermal activation in cerium salt baths. Corr Sci 50:1376–1384

    Article  CAS  Google Scholar 

  35. Rosalbino F, Angelini E, Macciò D, Saccone A, Delfino S (2009) Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn–5% Al (Galfan) alloy in neutral aerated sodium chloride solution. Electrochim Acta 54:1204–1209

    Article  CAS  Google Scholar 

  36. Osório WR, Peixoto LC, Garcia A (2013) The effects of Ag content and dendrite spacing on the electrochemical behavior of Pb–Ag alloys for Pb-acid battery components. J Power Sources 238:324–335

    Article  CAS  Google Scholar 

  37. Lv YZ, Bao LL, Meng F (2018) The electrochemical behaviors of Mg-5Li-3Al-1La and Mg-8Li-3Al-1La alloys in sodium chloride solution. Ionics 24:1715–1720

    Article  CAS  Google Scholar 

  38. Zhao YC, Huang GS, Zhang C (2018) Rare Metal Mater Eng 47:1064–1068

    Article  Google Scholar 

Download references

Funding

This work was supported by the Chinese 02 Special Fund (Grant No. 2017ZX02408003), the Chinese 1000 Plan for High Level Foreign Experts (Grand No. WQ20154100278), and Henan Province Natural Science Foundation in 2018. AV acknowledges support from the National Science Foundation (IRES 1358088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangxin Wang or Alex A. Volinsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Wang, G., Li, Y. et al. Electrochemical performance of Mg-air batteries based on AZ series magnesium alloys. Ionics 25, 2201–2209 (2019). https://doi.org/10.1007/s11581-018-2705-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2705-1

Keywords