Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A green and low-cost synthetic approach based on deep eutectic choline-urea solvent toward synthesis of CZTS thin films

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, a new, simple, and sustainable method of the Cu2ZnSnS4 (CZTS) thin-film synthesis is presented. The CZTS films have been electrochemically deposited by a single-step electrodeposition from deep eutectic (choline-urea) electrolyte, without sulfurization step, onto fluorine-doped tin oxide (FTO)-coated glass substrates. − 1.3 V/SCE has been selected as the optimum deposition potentials to grow the CZTS thin films. As-deposited CZTS films were characterized using a range of characterization techniques to study the structural, morphological, and compositional properties and confirmed the presence of the Cu2ZnSnS4 phases. The direct band gap energy for the CZTS thin films is found to be about 1.48 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kanuru CS, Shekar GL, Krishnamurthy L, Urs RGK (2014) Surface morphological studies of solar absorber layer Cu2ZnSnS4 (CZTS) thin films by non-vacuum deposition methods. J Nano-Electron Phys 6(2):2004–2001

    Google Scholar 

  2. Jae-Seung S, Sang-Yul L, Jae-Choon L, Hyo-Duk N, Kyoo-Ho K (2003) Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol Energy Mater Sol Cells 75:155–162

    Article  Google Scholar 

  3. Guo Q, Ford GM, Hillhouse HW, Agrawal R (2009) Sulfide nanocrystal inks for dense Cu(In1−xGax)(S1−ySey)2 absorber films and their photovoltaic performance. Nano Lett 9(8):3060–3065

  4. Kumar YBK, Babu GS, Bhaskar PU, Raja VS (2009) Effect of starting-solution pH on the growth of Cu2ZnSnS4 thin films deposited by spray pyrolysis. Phys Status Solidi A 206:1525–1530

    Article  CAS  Google Scholar 

  5. Hibberd CJ, Chassaing E, Liu W, Mitzi DB, Lincot D, Tiwari AN (2010) Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Prog Photovolt Res Appl 18(6):434–452

    Article  CAS  Google Scholar 

  6. El Manouni A, Casasus R, Mollar M, Marí B (2009) Propriétés optiques de couches minces de ZnCoO préparés par électrodéposition. Afr Sci 5(3):48–64

    Google Scholar 

  7. Lv J, Sun Y, Zhao M, Cao L, Xu J, He G, Zhang M, Sun Z (2016) Rectifying properties of ZnO thin films deposited on FTO by electrodeposition technique. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2016.01.104

  8. Lincot D, Gomez MH, Kessler J, Vedel J, Dimmler B, Schock HW (1990) Photoelectrochemical study of p-type copper indium diselenide thin films for photovoltaic applications. Sol Energy Mater 20:67–79. ​https://doi.org/10.1016/0165-1633(90)90018-V

  9. Brouri T (2011) Élaboration et étude des propriétés électriques des couches minces et des nanofils de ZnO. Université Paris-Est

  10. Ahn S, Kim CW, Yun JH, Gwak J, Jeong S, Ryu BH, Yoon KH (2010) CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution precursors. J Phys Chem C 114:8108–8113

  11. Mg L, Gr B (2016) Electrochemical synthesis and characterization of Cu2ZnSnS4 thin films. J Mater Sci Eng 5:4

    Google Scholar 

  12. Abermann S (2013) Non-vacuum processed next generation thin film photovoltaics: towards marketable efficiency and production of CZTS based solar cells. Sol Energy 94:37–70. ​https://doi.org/10.1016/j.solener.2013.04.017

    Article  CAS  Google Scholar 

  13. Swami SK, Kumar A, Dutta V (2013) Deposition of kesterite Cu2ZnSnS4 (CZTS) thin films by spin coating technique for solar cell application. Energy Procedia 33:198–202

  14. Bazine S, Azmi S, Khoumri E (2014) Study of mechanisms of electrodeposition of thin films semiconductors, for photovoltaic destination. Proc Eng Technol–PET

  15. Shivagan DD, Dale PJ, Samantilleke AP, Peter LM (2007) Electrodeposition of chalcopyrite films from ionic liquid electrolytes. Thin Solid Films 515(15):5899–5903. ​https://doi.org/10.1016/j.tsf.2006.12.092

    Article  CAS  Google Scholar 

  16. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147

    Article  CAS  PubMed  Google Scholar 

  17. Chen H, Ye Q, He X, Ding J, Zhang Y, Han J, Liu J, Liao C, Mei J, Lau W (2014) Electrodeposited CZTS solar cells from reline electrolyte. Green Chem 16:3841–3845

    Article  CAS  Google Scholar 

  18. Reddy RG (2006) Ionic liquids: How well do we know them? J Phase Equilib Diffus 27(3):210–211

  19. Shin S, Park C, Kim C, Kim Y, Park S, Lee JH (2015) Cyclic voltammetry studies of copper, tin and zinc electrodeposition in a citrate complex system for CZTS solar cell application. Curr Appli Phys. https://doi.org/10.1016/j.cap.2015.11.017

  20. Ateya BG, AlKharafi FM, Al-Azab AS (2003) Electrodeposition of sulfur from sulfide contaminated brines. Electrochem Solid-State Lett 6(9):C137-C140

    Article  CAS  Google Scholar 

  21. Jeon M, Shimizu T, Shingubara S (2011) Cu2ZnSnS4 thin films and nanowires prepared by different single-step electrodeposition method in quaternary electrolyte. Mater Lett 65:2364–2367

    Article  CAS  Google Scholar 

  22. Pawar SM, Pawar BS, Moholkar AV, Choi DS, Yun JH, Moon JH, Kolekar SS, Kim JH,  (2010) Electrochim Acta 55(12):4057–4061

  23. Scragg J J (2010) Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors. University of Bath, PhD Thesis

  24. Ennaoui A, Lux-Steiner M,  Weber A ,  Abou-Ras D ,  Kötschau I , Schock HW , Schurr R, Hölzing A, Jost S , R. Hock, Voß T, Schulze J, Kirbs A (2009) Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 517(7):2511–2251

  25. Ahmed S, Reuter KB, Gunawan O, Guo L, Romankiw LT, Deligianni H (Feb. 2012) A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv Energy Mater 2(2):253–259

    Article  CAS  Google Scholar 

  26. Sarswat PK, Free ML (2012) A comparative study of co-electrodeposited Cu2ZnSnS4 absorber material on fluorinated tin oxide and molybdenum substrates. J Electron Mater. https://doi.org/10.1007/s11664-012-2042-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Azmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azmi, S., Pezzato, L., Sturaro, M. et al. A green and low-cost synthetic approach based on deep eutectic choline-urea solvent toward synthesis of CZTS thin films. Ionics 25, 2755–2761 (2019). https://doi.org/10.1007/s11581-018-2719-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2719-8

Keywords