Abstract
The optimal functional form of convex underestimators for general twice continuously differentiable functions is of major importance in deterministic global optimization. In this paper, we provide new theoretical results that address the classes of optimal functional forms for the convex underestimators. These are derived based on the properties of shift-invariance and sign- invariance.
Similar content being viewed by others
References
Adjiman C.S., Floudas C.A.(1996): Rigorous convex underestimators for general tweice-differentiable problems. J. Global Optim. 9, 23–40
Adjiman C.S., Dallwig S., Androulakis I., Floudas C.A., Neumaier A.(1998): A global optimization method, αBB, for general twice-differentiable constrained NLP I. Theoretical aspects. Comput. Chem. Eng. 22(9): 1137–1158
Adjiman C.S., Androulakis I., Floudas C.A.(1998): A global optimization method, αBB, for general twice-differentiable constrained NLP II Implementation and computational results. Comput. Chem. Eng. 22, 1159–1179
Akrotirianakis I.G., Floudas C.A.(2004): Computational experience with a new class of convex underestimators: box-constrained NLP problems. J. Global Optim., 29, 249–264
Akrotirianakis I.G., Floudas C.A.(2004): A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Global Optim. 30, 367–390
Androulakis I.P., Maranas C.D., Floudas C.A. (1995): Alpha BB: a global optimization method for general constrained nonconvex problems. J. Global Optim. 7, 337–363
Floudas C.A.(2000): Deterministic Global Optimization: Theory, Methods, and Applications. Kluwer, Dordrecht
Floudas C.A.(2005): Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE J. 51, 1872–1884
Floudas, C.A., Kreinovich, V.: Towards optimal techniques for solving global optimization problems: symmetry-based approach. In. Torn, A., Zilinskas, J. (eds.) Models, and Algorithms for Global Optimization, Springer, Dordrecht (to appear) (2006)
Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A., Kallrath J. (1995): Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202
Maranas C.D., Floudas C.A.(1994): Global minimal potential energy conformations for small molecules. J. Global Optim. 4, 135–170
Adjiman C.S., Androulakis I.P., Maranas C.D., Floudas C.A. (1996): A global optimization method, alphaBB, for process design. Comput. Chem. Eng. 20, S419–S424
Maranas C.D., Floudas C.A.(1995): Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim. 7(2): 143–182
Androulakis I.P., Maranas C.D., Floudas C.A.(1997): Prediction of oligopeptide conformations via deterministic global optimization. J. Global Optim. 11(1): 1–34
Adjiman C.S., Androulkis I.P., Floudas C.A.(1997): Global optimization of MINLP problems in process synthesis and design. Comput. Chem. Eng. 21, S445–S450
Adjiman C.S., Androulakis I.P., Floudas C.A. (2000): Global optimization of mixed-integer nonlinear problems. AIChE J. 46(9): 1769–1797
Esposito W.R., Floudas C.A.(1998): Global optimization in parameter estimation of nonlinear algebraic models via the error-in-variables approach. Ind. Eng. Chem. Res. 37(5): 1841–1858
Esposito W.R., Floudas C.A. (2000): Global optimization in parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39(5): 1291–1310
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Floudas, C.A., Kreinovich, V. On the functional form of convex underestimators for twice continuously differentiable functions. Optimization Letters 1, 187–192 (2007). https://doi.org/10.1007/s11590-006-0003-8
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-006-0003-8