Abstract
We propose a simple privacy-preserving reformulation of a linear program with inequality constraints and nonnegativity constraints. By employing two random matrix transformation we construct a secure linear program based on the privately held data without revealing that data. The secure linear program has the same minimum value as the original linear program. Component groups of the solution of the transformed problem can be decoded and made public only by the original group that owns the corresponding columns of the constraint matrix and can be combined to give an exact solution vector of the original linear program.
Similar content being viewed by others
References
Du, W.: A study of several specific secure two-party computation problems. PhD thesis, Purdue University, Indiana (2001)
Du, W., Zahn, Z.: A practical approach to solve secure multi-party computation problems. In: Proceedings of the 2002 Workshop on New Security Paradigms, pp. 127–135 (2002)
Li, J., Atallah, M.: Secure and private collaborative linear programming. In: Proceedings of International Conference on Collaborative Computing, pp. 1–8 (2006)
Vaidya, J.: Privacy-preserving linear programming. In: Proceedings of the 2009 ACM symposium on Applied Computing, pp. 2002–2007. ACM New York, NY (2009)
Vaidya, J.: A secure revised simplex algorithm for privacy-preserving linear programming. In: International Conference on Advanced Information Networking and Applications, pp. 347–354 (2009)
Bednarz, A., Bean, N., Roughan, M.: Hiccups on the road to privacy-preserving linear programming. In: Proceedings of the 8th ACM Workshop on Privacy in the Electronic Society, pp. 117–120 (2009)
Mangasarian O.L.: Privacy-preserving linear programming. Optim. Lett. 5, 165–172 (2011)
Mangasarian O.L.: Privacy-preserving horizontally partitioned linear programs. Optim. Lett. 6, 431–436 (2012)
Wei, L., Haohao, L., Chongyang, D.: Privacy-preserving horizontally partitioned linear programs with inequality constraints. Optim. Lett. (2011). doi:10.1007/s11590-011-0403-2
Feng X., Zhang Z.: The rank of a random matrix. Appl. Math. Comput. 185, 689–694 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, H., Tan, Z. & Li, W. Privacy-preserving vertically partitioned linear program with nonnegativity constraints. Optim Lett 7, 1725–1731 (2013). https://doi.org/10.1007/s11590-012-0518-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-012-0518-0