Abstract
We consider a variant of the graph partitioning problem involving knapsack constraints with Gaussian random coefficients. In this new variant, under this assumption of probability distribution, the problem can be traditionally formulated as a binary SOCP for which the continuous relaxation is convex. In this paper, we reformulate the problem as a binary quadratic constrained program for which the continuous relaxation is not necessarily convex. We propose several linearization techniques for latter: the classical linearization proposed by Fortet (Trabajos de Estadistica 11(2):111–118, 1960) and the linearization proposed by Sherali and Smith (Optim Lett 1(1):33–47, 2007). In addition to the basic implementation of the latter, we propose an improvement which includes, in the computation, constraints coming from the SOCP formulation. Numerical results show that an improvement of Sherali–Smith’s linearization outperforms largely the binary SOCP program and the classical linearization when investigated in a branch-and-bound approach.
Similar content being viewed by others
References
Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. 36(2), 157–173 (1986)
Barbu, A., Zhu, S.: Graph partition by Swendsen–Wang cuts. In: Ninth IEEE International Conference on Computer Vision, 2003. Proceedings, vol. 1, pp. 320–327 (2003)
Bonami, P., Nguyen, V.H., Klein, M., Minoux, M.: On the solution of a graph partitioning problem under capacity constraints. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.Th. (eds.) ISCO. Lecture Notes in Computer Science, vol. 7422, pp. 285–296. Springer, Berlin (2012)
Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79 (1959)
Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59(1–3), 87–115 (1993)
Chopra, S., Rao, M.R.: Facets of the k-partition polytope. Discret. Appl. Math. 61(1), 27–48 (1995)
Cocke, W.J.: Central limit theorems for sums of dependent vector variables. Ann. Math. Stat. 43(3), 968–976 (1972)
Deza, M., Laurent, M.: Facets for the cut cone i. Math. Program. 56(1–3), 121–160 (1992)
Deza, M., Laurent, M.: Facets for the cut cone ii: clique-web inequalities. Math. Program. 56(1–3), 161–188 (1992)
Fan, N., Zheng, Q.P., Pardalos, P.M.: On the two-stage stochastic graph partitioning problem. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) Combinatorial Optimization and Applications. Lecture Notes in Computer Science, vol. 6831, pp. 500–509. Springer, Berlin (2011)
Feller, W.: ber den zentralen grenzwertsatz der wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 40(1), 521–559 (1936)
Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: The node capacitated graph partitioning problem: a computational study. Math. Program. 81(2), 229–256 (1998)
Fortet, R.: L’algèbre de boole et ses applications en recherche operationnelle. Trabajos de Estadistica 11(2), 111–118 (1960)
Frangioni, A., Lodi, A., Rinaldi, G.: New approaches for optimizing over the semimetric polytope. Math. Program. 104(2–3), 375–388 (2005)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Goldschmidt, O., Laugier, A., Olinick, E.A.: SONET/SDH ring assignment with capacity constraints. Discret. Appl. Math. 129(1), 99–128 (2003). Algorithmic Aspects of Communication
Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0 (2009)
Labbé, M., Özsoy, F.A.: Size-constrained graph partitioning polytopes. Discret. Math. 310(24), 3473–3493 (2010)
Lindeberg, J.W.: Eine neue herleitung des exponentialgesetzes in der wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 15(1), 211–225 (1922)
Liapunov, A.M.: Collected Works of Academician A.M. Lyapunov. Number v. 1-2 in Collected Works of Academician A.M. Lyapunov. Translation Division, Foreign Technology Division (1967)
Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(13), 193–228 (1998). International Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals and Image Processing
Nguyen, D.P., Minoux, M., Nguyen, V.H., Nguyen, T.H., Sirdey, R.: Improved compact formulations for graph partitioning in sparse graphs. Published on Optimization Online, manuscript 2015-06-4972 (2015)
Sherali, H.D., Smith, J.C.: An improved linearization strategy for zero-one quadratic programming problems. Optim. Lett. 1(1), 33–47 (2007)
Sørensen, M.M.: Facet-defining inequalities for the simple graph partitioning polytope. Discret. Optim. 4(2), 221–231 (2007)
Stan, O., Sirdey, R., Carlier, J., Nace, D.: The robust binomial approach to chance-constrained optimization problems with application to stochastic partitioning of large process networks. J. Heuristics 20(3), 261–290 (2014)
Acknowledgments
This work was partially funded by the Gaspard Monge Program for Optimization and operations research (PGMO) supported by EDF and the Jacques Hadamard Mathematical Foundation (FMJH). The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nguyen, D.P., Minoux, M., Nguyen, V.H. et al. Stochastic graph partitioning: quadratic versus SOCP formulations. Optim Lett 10, 1505–1518 (2016). https://doi.org/10.1007/s11590-015-0953-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-015-0953-9