Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stochastic graph partitioning: quadratic versus SOCP formulations

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider a variant of the graph partitioning problem involving knapsack constraints with Gaussian random coefficients. In this new variant, under this assumption of probability distribution, the problem can be traditionally formulated as a binary SOCP for which the continuous relaxation is convex. In this paper, we reformulate the problem as a binary quadratic constrained program for which the continuous relaxation is not necessarily convex. We propose several linearization techniques for latter: the classical linearization proposed by Fortet (Trabajos de Estadistica 11(2):111–118, 1960) and the linearization proposed by Sherali and Smith (Optim Lett 1(1):33–47, 2007). In addition to the basic implementation of the latter, we propose an improvement which includes, in the computation, constraints coming from the SOCP formulation. Numerical results show that an improvement of Sherali–Smith’s linearization outperforms largely the binary SOCP program and the classical linearization when investigated in a branch-and-bound approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. 36(2), 157–173 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbu, A., Zhu, S.: Graph partition by Swendsen–Wang cuts. In: Ninth IEEE International Conference on Computer Vision, 2003. Proceedings, vol. 1, pp. 320–327 (2003)

  3. Bonami, P., Nguyen, V.H., Klein, M., Minoux, M.: On the solution of a graph partitioning problem under capacity constraints. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.Th. (eds.) ISCO. Lecture Notes in Computer Science, vol. 7422, pp. 285–296. Springer, Berlin (2012)

  4. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59(1–3), 87–115 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chopra, S., Rao, M.R.: Facets of the k-partition polytope. Discret. Appl. Math. 61(1), 27–48 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cocke, W.J.: Central limit theorems for sums of dependent vector variables. Ann. Math. Stat. 43(3), 968–976 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deza, M., Laurent, M.: Facets for the cut cone i. Math. Program. 56(1–3), 121–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deza, M., Laurent, M.: Facets for the cut cone ii: clique-web inequalities. Math. Program. 56(1–3), 161–188 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, N., Zheng, Q.P., Pardalos, P.M.: On the two-stage stochastic graph partitioning problem. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) Combinatorial Optimization and Applications. Lecture Notes in Computer Science, vol. 6831, pp. 500–509. Springer, Berlin (2011)

  11. Feller, W.: ber den zentralen grenzwertsatz der wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 40(1), 521–559 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: The node capacitated graph partitioning problem: a computational study. Math. Program. 81(2), 229–256 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fortet, R.: L’algèbre de boole et ses applications en recherche operationnelle. Trabajos de Estadistica 11(2), 111–118 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frangioni, A., Lodi, A., Rinaldi, G.: New approaches for optimizing over the semimetric polytope. Math. Program. 104(2–3), 375–388 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  16. Goldschmidt, O., Laugier, A., Olinick, E.A.: SONET/SDH ring assignment with capacity constraints. Discret. Appl. Math. 129(1), 99–128 (2003). Algorithmic Aspects of Communication

  17. Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0 (2009)

  18. Labbé, M., Özsoy, F.A.: Size-constrained graph partitioning polytopes. Discret. Math. 310(24), 3473–3493 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindeberg, J.W.: Eine neue herleitung des exponentialgesetzes in der wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 15(1), 211–225 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liapunov, A.M.: Collected Works of Academician A.M. Lyapunov. Number v. 1-2 in Collected Works of Academician A.M. Lyapunov. Translation Division, Foreign Technology Division (1967)

  21. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(13), 193–228 (1998). International Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals and Image Processing

  22. Nguyen, D.P., Minoux, M., Nguyen, V.H., Nguyen, T.H., Sirdey, R.: Improved compact formulations for graph partitioning in sparse graphs. Published on Optimization Online, manuscript 2015-06-4972 (2015)

  23. Sherali, H.D., Smith, J.C.: An improved linearization strategy for zero-one quadratic programming problems. Optim. Lett. 1(1), 33–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sørensen, M.M.: Facet-defining inequalities for the simple graph partitioning polytope. Discret. Optim. 4(2), 221–231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stan, O., Sirdey, R., Carlier, J., Nace, D.: The robust binomial approach to chance-constrained optimization problems with application to stochastic partitioning of large process networks. J. Heuristics 20(3), 261–290 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Gaspard Monge Program for Optimization and operations research (PGMO) supported by EDF and the Jacques Hadamard Mathematical Foundation (FMJH). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet Hung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.P., Minoux, M., Nguyen, V.H. et al. Stochastic graph partitioning: quadratic versus SOCP formulations. Optim Lett 10, 1505–1518 (2016). https://doi.org/10.1007/s11590-015-0953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0953-9

Keywords