Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Saddle points and gap functions for weak generalized Ky Fan inequalities

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we employ the image space analysis method to investigate a weak generalized Ky Fan inequality with cone constraints. Some regular weak separation functions are introduced, and generalized Lagrangian functions are constructed by using these regular weak separation functions. Under suitable convexity assumptions and Slater condition, the existence of solution for the weak generalized Ky Fan inequality with cone constraints is equivalent to a saddle point of the generalized Lagrangian functions. Moreover, we also use the regular weak separation functions to construct gap functions for the weak generalized Ky Fan inequality with cone constraints, and obtain its error bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, K.: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 112, 234–240 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. India 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Bianchi, M., Hadjisavvas, N., Schaible, S.: Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92(3), 527–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mastroeni, G.: Separation Methods for Vector Variational Inequalities. Saddle point and gap function. Nonlinear Optimization and Related Topics. Springer, New York (2000)

    MATH  Google Scholar 

  5. Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria. Mathematical Theories. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  6. Mastroeni, G.: Gap functions for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, S.J., Teo, K.L., Yang, X.Q., Wu, S.Y.: Gap functions and existence of solutions to generalized vector quasi-equilibrium problems. J. Glob. Optim. 34, 427–440 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mastroeni, G., Panicucci, B., Passacantando, M., Yao, J.C.: A separation approach to vector quasi-equilibrium problems: saddle point and gap function. Tainwan J. Math. 13, 657–673 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mastroeni, G.: On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation. J. Glob. Optim. 53, 203–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guu, S.-M., Li, J.: Vector quasi-equilibrium problems: separation, saddle points and error bounds for the solution set. J. Glob. Optim. 58, 751–767 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, Y.D., Li, S.J.: Optimality conditions for generalized Ky Fan quasi-inequalities with applications. J. Optim. Theory Appl. 157, 663–684 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proceedings of the 9th International Mathematical Programming Symposium, Budapest. Survey of Mathematical Programming, pp. 423–439. North-Holland, Amsterdam (1979)

  13. Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331–365 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giannessi, F.: Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions. Springer, New York (2005)

    MATH  Google Scholar 

  15. Rubinov, A.M., Yang, X.Q., Bagirov, A.M., Gasimov, R.N.: Lagrange-type functions in constrained optimization. J. Math. Sci. 115, 2437–2505 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, H.Z., Mastroeni, G., Wu, H.X.: Separation approach for augmented Lagrangians in constrained nonconvex optimization. J. Optim. Theory Appl. 144, 275–290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part I: image space analysis. J. Optim. Theory Appl. 161, 738–762 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part II: special duality schemes. J. Optim. Theory Appl. 161, 763–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Auslender, A.: Optimization. Methodes Numeriques. Masson, Paris (1976)

    MATH  Google Scholar 

  20. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Progr. Ser. A 53, 99–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Charitha, C., Dutta, J.: Regularized gap functions and error bounds for vector variational inequality. Pac. J. Optim. 6, 497–510 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Xu, Y.D., Li, S.J.: Gap functions and error bounds for weak vector variational inequalities. Optimization 63, 1339–1352 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun, X.K., Chai, Y.: Gap functions and error bounds for generalized vector variational inequalities. Optim. Lett. 8, 1663–1673 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Charitha, C., Dutta, J., Laitha, C.S.: Gap functions for vector variational inequalities. Optimization 64, 1499–1520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J., Huang, N.J., Yang, X.Q.: Weak sharp minima for set-valued vector variational inequalities with an application. Eur. J. Oper. Res. 205, 262–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the two anonymous reviewers for their valuable comments and suggestions, which helped to improve the paper. This research was supported by the National Natural Science Foundation of China (Grant Nos. 11171362, 11571055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G.H., Li, S.J. Saddle points and gap functions for weak generalized Ky Fan inequalities. Optim Lett 12, 1265–1280 (2018). https://doi.org/10.1007/s11590-017-1118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1118-9

Keywords