Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Lagrangian decomposition approach to computing feasible solutions for quadratic binary programs

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we develop a Lagrangian decomposition based heuristic method for general quadratic binary programs (QBPs) with linear constraints. We extend the idea of Lagrangian decomposition by Chardaire and Sutter (Manag Sci 41(4):704–712, 1995) and Billionnet and Soutif (Eur J Oper Res 157(3):565–575, 2004a, Inf J Comput 16(2):188–197, 2004b) in which the quadratic objective is converted to a bilinear function by introducing auxiliary variables to duplicate the original complicating variables in the problem. Instead of using linear constraints to assure the equity between the two types of decision variables, we introduce generalized quadratic constraints and relax them with Lagrangian multipliers. Instead of computing an upper bound for a maximization problem, we focus on lower bounding with Lagrangian decomposition based heuristic. We take advantage of the decomposability presented in the Lagrangian subproblems to speed up the heuristic and identify one feasible solution at each iteration of the subgradient optimization procedure. With numerical studies on several classes of representative QBPs, we investigate the sensitivity of lower-bounding performance on parameters of the additional quadratic constraints. We also demonstrate the potentially improved quality of preprocessing in comparison with the use of a QBP solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W.P., Forrester, R.J.: A simple recipe for concise mixed 0–1 linearizations. Oper. Res. Lett. 33(1), 55–61 (2005)

    Article  MATH  Google Scholar 

  2. Adams, W.P., Forrester, R.J.: Linear forms of nonlinear expressions: new insights on old ideas. Oper. Res. Lett. 35(4), 510–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alidaee, B., Kochenberger, G., Ahmadian, A.: 0–1 quadratic programming approach for optimum solutions of two scheduling problems. Int. J. Syst. Sci. 25(2), 401–408 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15, 3241 (1982)

    Article  MathSciNet  Google Scholar 

  5. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)

    Article  MATH  Google Scholar 

  6. Billionnet, A., Calmels, F.: Linear programming for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 92(2), 310–325 (1996)

    Article  MATH  Google Scholar 

  7. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109(1), 55–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Billionnet, A., Soutif, É.: An exact method based on Lagrangian decomposition for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 157(3), 565–575 (2004a)

    Article  MathSciNet  MATH  Google Scholar 

  9. Billionnet, A., Soutif, E.: Using a mixed integer programming tool for solving the 0–1 quadratic knapsack problem. Inf. J. Comput. 16(2), 188–197 (2004b)

    Article  MathSciNet  MATH  Google Scholar 

  10. Billionnet, A., Faye, A., Soutif, É.: A new upper bound for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 112(3), 664–672 (1999)

    Article  MATH  Google Scholar 

  11. Boros, E., Hammer, P.: Pseudo-boolean optimization. Discrete Appl. Math. 123(1–3), 155–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boros, E., Hammer, P.L., Tavares, G.: Local search heuristics for quadratic unconstrained binary optimization (qubo). J. Heuristics 13(2), 99–132 (2007)

    Article  Google Scholar 

  13. Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math. Program. 141(1–2), 435–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chaillou, P., Hansen, P., Mahieu, Y.: Best Network Flow Bounds for the Quadratic Knapsack Problem. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  15. Chardaire, P., Sutter, A.: A decomposition method for quadratic zero-one programming. Manag. Sci. 41(4), 704–712 (1995)

    Article  MATH  Google Scholar 

  16. Duman, E., Uysal, M., Alkaya, A.F.: Migrating birds optimization: a new meta-heuristic approach and its application to the quadratic assignment problem. Appl. Evolut. Comput. Pt I 6624, 254–263 (2011)

    Google Scholar 

  17. Ford, D.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  18. Forrester, R., Greenberg, H.: Quadratic binary programming models in computational biology. Algorithmic Oper. Res. 3(2), 110–129 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Gallo, G., Hammer, P.L., Simeone, B.: Quadratic knapsack-problems. Math. Program. Study 12, 132–149 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Manag. Sci. 22(4), 455–460 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Glover, F., Kochenberger, G.A., Alidaee, B.: Adaptive memory tabu search for binary quadratic programs. Manag. Sci. 44(3), 336–345 (1998)

    Article  MATH  Google Scholar 

  22. Glover, F., Alidaee, B., Rego, C., Kochenberger, G.: One-pass heuristics for large-scale unconstrained binary quadratic problems. Eur. J. Oper. Res. 137(2), 272–287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hanafi, S., Rebai, A.R., Vasquez, M.: Several versions of the devour digest tidy-up heuristic for unconstrained binary quadratic problems. J. Heuristics 19(4), 645–677 (2013)

    Article  Google Scholar 

  24. Held, M., Wolfe, P., Crowder, H.: Validation of subgradient optimization. Math. Program. 6(1), 62–88 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Helmberg, C., Rendl, F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program. 82(3), 291–315 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iasemidis, L., Pardalos, P., Sackellares, J., Shiau, D.: Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J. Comb. Optim. 5(1), 9–26 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ivnescu, P.L.: Some network flow problems solved with pseudo-boolean programming. Oper. Res. 13(3), 388–399 (1965)

    Article  MathSciNet  Google Scholar 

  28. Klepeis, J., Floudas, C., Morikis, D., Tsokos, C., Lambriss, J.: Design of peptide analogues with improved activity using a novel de novo protein design approach. Ind. Eng. Chem. Res. 43(14), 3817–3826 (2004)

    Article  Google Scholar 

  29. Lodi, A., Allemand, K., Liebling, T.M.: An evolutionary heuristic for quadratic 0–1 programming. Eur. J. Oper. Res. 119(3), 662–670 (1999)

    Article  MATH  Google Scholar 

  30. Lu, Z.P., Glover, F., Hao, J.K.: A hybrid metaheuristic approach to solving the ubqp problem. Eur. J. Oper. Res. 207(3), 1254–1262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nyberg, A., Westerlund, T.: A new exact discrete linear reformulation of the quadratic assignment problem. Eur. J. Oper. Res. 220(2), 314–319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oral, M., Kettani, O.: A linearization procedure for quadratic and cubic mixed-integer problems. Oper. Res. 40(S1), S109–S116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131(1–4), 259–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pardalos, P.: Construction of test problems in quadratic bivalent programming. ACM Trans. Math. Softw. (TOMS) 17(1), 74–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pardalos, P., Jha, S.: Graph separation techniques for quadratic zero-one programming. Comput. Math. Appl. 21(6–7), 107–113 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pardalos, P., Jha, S.: Complexity of uniqueness and local search in quadratic 0–1 programming. Oper. Res. Lett. 11(2), 119–123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pardalos, P., Xue, J.: The maximum clique problem. J. Glob. Optim. 4(3), 301–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Paul, G.: An efficient implementation of the robust tabu search heuristic for sparse quadratic assignment problems. Eur. J. Oper. Res. 209(3), 215–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Picard, J., Ratliff, H.: Minimum cuts and related problems. Networks 5(4), 357–370 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121(2), 307–335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Saremi, H.Q., Abedin, B., Kermani, A.M.: Website structure improvement: quadratic assignment problem approach and ant colony meta-heuristic technique. Appl. Math. Comput. 195(1), 285–298 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Sun, J.Y., Zhang, Q.F., Yao, X.: Meta-heuristic combining prior online and offline information for the quadratic assignment problem. IEEE Trans. Cybernet. 44(3), 429–444 (2014)

    Article  Google Scholar 

  43. Xia, Y., Xing, W.X.: Parametric lagrangian dual for the binary quadratic programming problem. J. Glob. Optim. 61(2), 221–233 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, Z., Hong, M.Y., Luo, Z.Q.: Semidefinite approximation for mixed binary quadratically constrained quadratic programs. SIAM J. Optim. 24(3), 1265–1293 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Air Force Office of Scientific Research Grant FA9550-08-1-0268. We also thank Dr. Oleg A. Prokopyev’s suggestions and comments on the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WA., Zhu, Z. & Kong, N. A Lagrangian decomposition approach to computing feasible solutions for quadratic binary programs. Optim Lett 12, 155–169 (2018). https://doi.org/10.1007/s11590-017-1125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1125-x

Keywords