Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Asymptotic behaviors of semidefinite programming with a covariance perturbation

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we study asymptotic behaviors of semidefinite programming with a covariance perturbation. We obtain some moderate deviations, Cramér-type moderate deviations and a law of the iterated logarithm of estimates of the respective optimal value and optimal solutions when the covariance matrix is estimated by its sample covariance. As an example, we also apply the main results to the Minimum Trace factor Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bentler, P.M.: Lower-bound method for the dimension-free measurement of internal consistency. Soc. Sci. Res. 1, 343–357 (1972)

    Article  Google Scholar 

  2. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  3. Chiralaksanakul, A., Morton, D.P.: Assessing policy quality in multi-stage stochastic programming. Stochastic Programming E-Print Series, Humboldt-Universität zu Berlin (2004)

  4. Dembo, A., Zeitouni, O.: Large Deviation Technique and Applicatons. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  5. Eichorn, A., Römisch, W.: Stochastic integer programming: limit theorems and confidence intervals. Math. Oper. Res. 32, 118–135 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, F.Q., Zhao, X.Q.: Delta method in large deviations and moderate deviations for estimators. Ann. Stat. 39, 1211–1240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guigues, V.: Multistep stochastic mirror descent for risk-averse convex stochastic programs based on extended polyhedral risk measures. Math. Program. 163, 169–212 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guigues, V., Juditsky, A., Nemirovski, A.: Non-asymptotic confidence bounds for the optimal value of a stochastic program. Optim. Methods Softw. 32, 1033–1058 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guigues, V., Krätschmer, V., Shapiro, A.: Statistical inference and hypotheses testing of risk averse stochastic programs. SIAM J. Optim. 28, 1337–1366 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Helmke, U., Moore, J.B.: Optimization and Dynamical Systems, 2nd edn. Springer, London (1996)

    MATH  Google Scholar 

  11. King, A.J., Rockafellar, R.T.: Asymptotic theory for solutions in statistical estimation and stochastic programming. Math. Oper. Res. 18, 148–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kleywegt, A.J., Shapiro, A., Homem de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12, 479–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lan, G., Nemirovski, A., Shapiro, A.: Validation analysis of mirror descent stochastic approximation method. Math. Program. 134, 425–458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Petrov, V.V.: Sums of Independent Random Variables. Springer, New York (1975)

    Book  MATH  Google Scholar 

  15. Pflug, G.: Asymptotic stochastic programs. Math. Oper. Res. 20, 769–789 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pflug, G.: Stochastic programs and statistical data. Ann. Oper. Res. 85, 59–78 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pflug, G.: Stochastic optimization and statistical inference. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming: Handbooks in Operations Research and Management Science, vol. 10. Elsevier, New York (2003)

    Chapter  Google Scholar 

  18. Römisch, W.: Delta method infinite dimensional. In: Kotz, S., Read, C.B., Balakrishnan, N., Vidakovic, B. (eds.) Encyclopedia of Statistical Sciences, vol. 16, 2nd edn. Wiley, New York (2006)

    Google Scholar 

  19. Scheinberg, K.: Parametric linear semidefinite programming. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming, Chapter 4, pp. 93–110. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  20. Shapiro, A.: Rank reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis. Psychometrika 47, 187–199 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shapiro, A.: Weighted minimum trace factor analysis. Psychometrika 47, 243–264 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shapiro, A.: Asymptotic properties of statistical estimators in stochastic programming. Ann. Stat. 17, 841–858 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shapiro, A.: Asymptotic analysis of stochastic programs. Ann. Oper. Res. 30, 169–186 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77, 301–320 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Shapiro, A.: Duality, optimality conditions, and perturbation analysis. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming, Chapter 4, pp. 67–92. Kluwer Academic Publishers, Boston (2000)

    Chapter  Google Scholar 

  26. Shapiro, A.: Statistical inference of semidefinite programming. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1250-z

  27. Shapiro, A., Ten Berge, J.M.F.: Statistical inference of minimum rank factor analysis. Psychometrika 67, 79–94 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, 2nd edn. SIAM, Philadelphia (2014)

    MATH  Google Scholar 

  29. Shapiro, A., Homem de Mello, T.: On rate of convergence of optimal solutions of Monte Carlo approximations of stochastic programs. SIAM J. Optim. 11, 70–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York (1996)

    Book  MATH  Google Scholar 

  31. Yurinsky, V.: Sum and Gaussian Vectors. Lecture Notes in Mathematics, vol. 1617. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to two anonymous referees for their helpful comments and suggestions. M. J. Gao: Supported by the National Natural Science Foundation of China (NSFC) Grant 11801184 and 11771157. K. F. C. Yiu: Supported by GRF Grant PolyU. 152200/14E and PolyU Grant G-YBVQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Jie Gao.

Appendix: Differentiability properties of the optimal value and an optimal solution

Appendix: Differentiability properties of the optimal value and an optimal solution

For convenience, in this “Appendix”, we recall some results on differentiability properties of the optimal value \(\vartheta (\Sigma )\) and an optimal solution \({\bar{x}}(\Sigma )\) of the following problem (A.1) considered as functions of matrix \(\Sigma \in {\mathbb {S}}^p\) (see [26]):

$$\begin{aligned} \min _{x\in {\mathbb {R}}^n} c^Tx\quad \text{ subject } \text{ to } \Sigma +{\mathcal {A}}(x)\succcurlyeq 0, \end{aligned}$$
(A.1)

which can be viewed as an SDP problem parameterized by matrix \(\Sigma \in {\mathbb {S}}^p\).

The (Lagrangian) dual of problem (A.1) can be written as

$$\begin{aligned} \max _{\Lambda \in {\mathbb {S}}^p_+ }\Lambda \bullet \Sigma \quad \text{ subject } \text{ to } \Lambda \bullet A_i=c_i,~i=1,\ldots ,n \end{aligned}$$
(A.2)

The problems (A.1) and (A.2) are refered as the primal (P) and dual (D) problems, respectively. We also use notation \(\sigma :={\mathrm{vec}\,}(\Sigma )\), \({\bar{x}}(\sigma ):={\bar{x}}(\Sigma )\) and \(\vartheta (\sigma ):=\vartheta (\Sigma )\).

Slater condition    It is said that Slater condition holds for the primal problem (P) if there exists \(x^* \in {\mathbb {R}}^n\) such that \(\Sigma +{\mathcal {A}}(x^*)\in {\mathbb {S}}^p_{++} \). If Slater condition holds, then optimal values of problems (P) and (D) are equal to each other.

Let \({\mathcal {W}}_r\) denote the space of matrices \(A \in {\mathbb {S}}^p\) of \({\mathrm{rank}\,}(A) = r \le p\). Then by Proposition 1.1, Chapter 5 in [10], \({\mathcal {W}}_r\) is a smooth manifold of dimension

$$\begin{aligned} {\mathrm{dim}\,}({\mathcal {W}}_r) = p(p + 1)/2 - (p - r)(p - r + 1)/2 = pr - r(r - 1)/2, \end{aligned}$$

and the tangent space of the manifold \({\mathcal {W}}_r\) at \(A \in {\mathcal {W}}_r\) is

$$\begin{aligned} T_{{\mathcal {W}}_r} (A)=\left\{ \Delta A+A\Delta ^T;~\Delta \text{ is } p\times p \text{ matrix } \right\} . \end{aligned}$$

Nondegenerate point    It is said that \(x^*\in {\mathbb {R}}^n\) is a nondegenerate point of mapping \(x \rightarrow \Sigma +{\mathcal {A}}(x)\) if for \(\Upsilon := \Sigma + {\mathcal {A}}(x^*)\) and \(r := {\mathrm{rank}\,}(\Upsilon )\) it follows that

$$\begin{aligned} {\mathcal {A}}({\mathbb {R}}^n) + T_{{\mathcal {W}}_r} (\Upsilon ) ={\mathbb {S}}^p, \end{aligned}$$

otherwise point \(x^*\) is said to be degenerate.

1.1 A.1: Differentiability of the optimal value \(\vartheta (\Sigma )\)

Let \({\mathrm{Sol}\,}(P)\) denote the set of optimal solutions of the reference (true) problem (1.1), and let \({\mathrm{Sol}\,}(D)\) be the set of optimal solutions of its dual problem (A.1) for \(\Sigma =\Sigma _0\). By the classical convex analysis and Theorem 4.1.9 in [25], the following result holds.

Proposition 3.1

(Proposition 3 in [26]) Suppose that Slater condition holds for the reference problem (1.1) and its optimal value \(\vartheta (\Sigma _0)\) is finite. Then the set \({\mathrm{Sol}\,}(D)\) is nonempty, convex and compact and the optimal value function \(\vartheta (\cdot )\) is continuous convex function and Fréchet directionally differentiable at \(\Sigma _0\) with

$$\begin{aligned} \vartheta ^\prime (\Sigma _0, H) = \sup _{\Lambda \in {\mathrm{Sol}\,}(D)} \Lambda \bullet H. \end{aligned}$$
(A.3)

That is,

$$\begin{aligned} \vartheta (\Sigma )-\vartheta (\Sigma _0)=\sup _{\Lambda \in {\mathrm{Sol}\,}(D)} \Lambda \bullet (\Sigma -\Sigma _0)+o(\Vert \sigma -\sigma _0\Vert ) \end{aligned}$$
(A.4)

1.2 A.2: The second order differentiability of the optimal value \(\vartheta (\Sigma )\)

Suppose that \({\mathrm{Sol}\,}(P) = \{x^*\}\) and that \(x^*\) is a nondegenerate point of \(\Sigma _0 +{\mathcal {A}}(\cdot )\), and so \({\mathrm{Sol}\,}(D) = \{\Lambda \}\) is a singleton.

Complementarity condition    Assume that Slater condition holds for the reference problem (1.1). Then by the first order optimality conditions we have that for \(x^* \in {\mathrm{Sol}\,}(P)\) and \(\Lambda \in {\mathrm{Sol}\,}(D)\) the following complementarity condition follows

$$\begin{aligned} (\Sigma _0 +{\mathcal {A}}(x^*)) \bullet \Lambda = 0. \end{aligned}$$

Note that since \((\Sigma _0 +{\mathcal {A}}(x^*)) \succcurlyeq 0\) and \(\Lambda \succcurlyeq 0\), this complementarity condition is equivalent to \((\Sigma _0 +{\mathcal {A}}(x^*)) \Lambda = 0\) and hence \({\mathrm{rank}\,}(\Lambda ) \le p- r\), where

$$\begin{aligned} r := {\mathrm{rank}\,}(\Sigma _0 +{\mathcal {A}}(x^*)). \end{aligned}$$

It is said that the strict complementarity condition holds at \(\Lambda \in {\mathrm{Sol}\,}(D)\) if \({\mathrm{rank}\,}(\Lambda ) = p -r\).

Suppose also that the strict complementarity condition holds. Let \(\Upsilon = NDN^T\) be the spectral decomposition of matrix \(\Upsilon =\Sigma _0 +{\mathcal {A}}(x^*)\), and \(\Lambda = EE^T\) for some \(p\times (p-r)\) matrix E of rank \(p-r\) such that \(N^TE = 0\). It is known (see [26]) that the following optimization problem (A.5) depending on \(\Delta \in {\mathbb {S}}^p\) has a unique optimal solution \(J^T\delta \) and the optimal value is a quadratic function \(\delta ^TQ\delta \) where \( \delta :={\mathrm{vec}\,}(\Delta )\), J is a \(p^2\times n\) matrix and Q is a \(p^2\times p^2\) matrix.

$$\begin{aligned} \left\{ \begin{aligned} \min _{h\in {\mathbb {R}}^n}&\;\; {\mathrm{tr}\,}\left( \Lambda ({\mathcal {A}}(h) + \Delta )\Upsilon ^\dagger ({\mathcal {A}}(h) +\Delta )\right) \\ s.t.&\;\; E^T{\mathcal {A}}(h)E + E^T\Delta E = 0. \end{aligned} \right. \end{aligned}$$
(A.5)

The following result is Theorem 1 in [26] which can be obtained from Section 5.3.6 in [2].

Proposition 3.2

(Theorem 1 in [26]) Suppose that \({\mathrm{Sol}\,}(P) = \{x^*\}\) is a singleton, and that \(x^*\) is a nondegenerate point of \(\Sigma _0 +{\mathcal {A}}(\cdot )\) and the strict complementarity condition holds. Then \({\bar{x}}(\cdot )\) is differentiable at \(\sigma _0 = {\mathrm{vec}\,}(\Sigma _0)\) and

$$\begin{aligned} {\bar{x}}(\sigma ) = {\bar{x}}(\sigma _0) + J^T(\sigma - \sigma _0) + o(\Vert \sigma -\sigma _0\Vert ), \end{aligned}$$
(A.6)

where \(J^T\delta \) is the optimal solution of problem (A.5). Moreover

$$\begin{aligned} \vartheta (\sigma ) =\vartheta (\sigma _0) + \Lambda \bullet (\Sigma -\Sigma _0) + (\sigma -\sigma _0)^TQ(\sigma -\sigma _0) + o(\Vert \sigma -\sigma _0\Vert ^2),\nonumber \\ \end{aligned}$$
(A.7)

where \(\Lambda \) is the optimal solution of the dual problem and \(\delta ^TQ\delta \) is the optimal value of problem (A.5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M.J., Yiu, K.F.C. Asymptotic behaviors of semidefinite programming with a covariance perturbation. Optim Lett 13, 1631–1649 (2019). https://doi.org/10.1007/s11590-018-1346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1346-7

Keywords