Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Representative scenario construction and preprocessing for robust combinatorial optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In robust combinatorial optimization with discrete uncertainty, approximation algorithms based on constructing a single scenario representing the whole uncertainty set are frequently used. One is the midpoint method, which uses the average case scenario. It is known to be an N-approximation, where N is the number of scenarios. In this paper, we present a linear program to construct a representative scenario for the uncertainty set, which gives an approximation guarantee that is at least as good as for previous methods. We further employ hyper heuristic techniques operating over a space of preprocessing and aggregation steps to evolve algorithms that construct alternative representative single scenarios for the uncertainty set. In numerical experiments on the selection problem we demonstrate that our approaches can improve the approximation guarantee of the midpoint approach by more than 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://people.sc.fsu.edu/~jburkardt/cpp_src/kmeans/kmeans.html.

References

  1. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation of min–max and min–max regret versions of some combinatorial optimization problems. Eur. J. Oper. Res. 179(2), 281–290 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aissi, H., Bazgan, C., Vanderpooten, D.: Min–max and min–max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197(2), 427–438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsimas, D., Gupta, V., Kallus, N.: Data-driven robust optimization. Math. Program. 167(2), 235–292 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  5. Chassein, A., Goerigk, M.: On scenario aggregation to approximate robust combinatorial optimization problems. Optim. Lett. 12(7), 1523–1533 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conde, E.: On a constant factor approximation for minmax regret problems using a symmetry point scenario. Eur. J. Oper. Res. 219(2), 452–457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Dokka, T., Goerigk, M.: An experimental comparison of uncertainty sets for robust shortest path problems. In: D’Angelo, G., Dollevoet, T. (eds.) 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), OpenAccess Series in Informatics (OASIcs), vol. 59, pp. 16:1–16:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017)

  9. Kasperski, A., Zieliński, P.: Robust discrete optimization under discrete and interval uncertainty: a survey. In: Doumpos, M., Zopounidis, C., Grigoroudis, E. (eds.) Robustness Analysis in Decision Aiding, Optimization, and Analytics, pp. 113–143. Springer, Basel (2016)

    Chapter  Google Scholar 

  10. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Comput. Oper. Res. 51, 190–199 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Partially funded through EPSRC Grants EP/L504804/1 and EP/M506369/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Goerigk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goerigk, M., Hughes, M. Representative scenario construction and preprocessing for robust combinatorial optimization problems. Optim Lett 13, 1417–1431 (2019). https://doi.org/10.1007/s11590-018-1348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1348-5

Keywords