Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Estimating cropland carbon mitigation potentials in China affected by three improved cropland practices

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Agriculture is a large source of carbon emissions. The cropland practices of fertilizer substitution, crop straw and conservation tillage are beneficial and help to rebuild local soil carbon stocks and reduce soil carbon emissions, in addition to reducing the consumption of fertilizers and fossil fuels. These improved cropland practices can directly and indirectly mitigate carbon emissions, benefiting the sustainability of croplands. For these three improved practices, we estimated carbon mitigation potentials in rice, wheat and maize croplands in China. The combined contribution of these practices to carbon mitigation was 38.8 Tg C yr-1, with fertilizer substitution, crop straw return, and conservation tillage contributing 26.6, 3.6 and 8.6 Tg C yr-1, respectively. Rice, wheat and maize croplands had potentials to mitigate 13.4, 11.9 and 15.5 Tg C yr-1, respectively, with the combined direct and indirect potential of 33.8 and 5.0 Tg C yr-1. Because of differences in local climate and specific diets, the regional cropland carbon mitigation potentials differed greatly among provinces in China. In China, 18 provinces had a “target surplus” for which the carbon mitigation from these three practices was larger than the mitigation target set for 2020. At the national level, a net “target surplus” of 4.84 Tg C yr-1 would be attained for Chinese croplands with full implementation of the three improved practices. Regional cooperation must be developed to achieve carbon mitigation targets using such measures as carbon trading, establishing regional associations, and strengthening research programs to improve practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aertsens J, De Nocker L, Gobin A (2013) Valuing the carbon sequestration potential for European agriculture. Land Use Policy 31: 584–594. DOI: 10.1016/j.landusepol.2012.09.003

    Article  Google Scholar 

  • Augustin L, Barbante C, Barnes PRF, et al. (2004) Eight glacial cycles from an Antarctic ice core. Nature 429: 623–628. DOI: 10.1038/nature02599

    Article  Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, et al. (2007) Tillage and soil carbon sequestration -What do we really know? Agriculture Ecosystems & Environment 118: 1–5. DOI: 10.1016/j.agee.2006.05.014

    Article  Google Scholar 

  • Cheng K, Ogle SM, Parton WJ, et al. (2014) Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model. Global Change Biology 20: 948–962. DOI: 10.1111/gcb.12368

    Article  Google Scholar 

  • Cheng K, Zheng J, Nayak D, et al. (2013) Re-evaluating the biophysical and technologically attainable potential of topsoil carbon sequestration in China’s cropland. Soil Use Manage 29: 501–509. DOI: 10.1111/sum.12077

    Article  Google Scholar 

  • Chuai X, Huang X, Wang W, et al. (2015) Land use, total carbon emission’s change and low carbon land management in Coastal Jiangsu, China. Journal of Cleaner Production 103: 77–86. DOI: 10.1016/j.jclepro.2014.03.046

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, et al. (2007) Couplings between changes in the climate system and biogeochemistry. IPCC, 2007: Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, et al. (Eds.). Cambridge, U.K.: Cambridge University Press.

  • Dixon RK, Brown S, Houghton RA, et al. (1994) Carbon pools and flux of global forest ecosystems. Science 263: 185–189. DOI: 10.1126/science.8023136

    Article  Google Scholar 

  • Fabrizzi KP, Rice CW, Amado TJC, et al. (2009) Protection of soil organic C and N in temperate and tropical soils: effect of native and agroecosystems. Biogeochemistry 92(1-2): 129–143. DOI: 10.1007/s10533-008-9261-0

    Article  Google Scholar 

  • Fan M, Shen J, Yuan L, et al. (2012) Food security: improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of experimental botany 63: 13–24. DOI: 10.1093/jxb/err248

    Article  Google Scholar 

  • Fan Y, Xia Y (2012) Exploring energy consumption and demand in China. Energy 40: 23–30. DOI: 10.1016/j.energy.2011.09.049

    Article  Google Scholar 

  • Frank S, Schmid F, Havlík P, et al. (2015) The dynamic soil organic carbon mitigation potential of European cropland. Global Environmental Change 35: 269–278. DOI: 10.1016/j.gloenvcha.2015.08.004

    Article  Google Scholar 

  • Freibauer A, Rounsevell M, Smith P, et al. (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122: 1–23. DOI: 10.1016/j.geoderma.2004.01.021

    Article  Google Scholar 

  • Guo F, Song Z, Sullivan L, et al. (2015) Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment. Science Bulletin 60(6): 591–597. DOI: 10.1007/s11434-015-0729-8

    Article  Google Scholar 

  • Han B, Kong F, Zhang H, et al. (2010) Effect of tillage conversion on carbon sequestration capability of farmland soil doubled cropped with wheat and corn. The Journal of Applied Ecology 21(1): 91–98. (In Chinese)

    Google Scholar 

  • Han B, Wang X, Ouyang Z (2005) Saturation levels and carbon sequestration potentials of soil carbon pools in farmland ecosystems of China. Rural Eco-Environment 21(4): 6–11. (In Chinese)

    Google Scholar 

  • Huang T, Gao B, Christie P, et al. (2013) Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences 10: 897–7911. DOI: 10.5194/bg-10-7897-2013

    Article  Google Scholar 

  • Huang S, Sun Y, Zhang W (2012) Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: a meta-analysis. Climate Change 112: 847–858. DOI: 10.1007/s10584-011-0255-x

    Article  Google Scholar 

  • Huang Y, Sun W (2006) Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chinese Science Bulletin 51(15): 1785–1803. DOI: 10.1007/s11434-006-2056-6

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: Mitigation. Contribution of Working Group IIIto the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, USA.

    Google Scholar 

  • Jawson MD, Shafer SR, Franzluebbers AJ, et al. (2005) GRACEnet: Greenhouse gas reduction through agricultural carbon enhancement network. Soil & Tillage Research 83: 167–172. DOI: DOI:10.1016/j.still.2005.02.015

    Article  Google Scholar 

  • Lal R (2004) Carbon emission from farm operations. Environment International 30: 981–990. DOI: 10.1016/j.envint.2004.03.005

    Article  Google Scholar 

  • Lal R (2007) Carbon management in agricultural soils. Mitigation and adaptation strategies for global change 12: 303–322. DOI: 10.1007/s11027-006-9036-7

    Article  Google Scholar 

  • Lal R, Follett RF, Kimble JM (2003) Achieving Soil Carbon Sequestration in the United States: A Challenge to the Policy Makers. Soil Science 168: 827–845. DOI: 10.1097/01.ss.0000106407.84926.6b

    Article  Google Scholar 

  • Le Quéré C, Andres RJ, Boden T, et al. (2013) The global carbon budget 1959–2011. Earth System science data 5: 165–185. DOI: 10.5194/essd-5-165-2013

    Article  Google Scholar 

  • Lee ZH, Sethupathi S, Lee KT, et al. (2013) An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers. Renewable and Sustainable Energy Reviews 28: 71–81. DOI: 10.1016/j.rser.2013.07.055

    Article  Google Scholar 

  • Li B, Zhang J, Li H (2011) Research on Spatial-temporal Characteristics and Affecting Factors Decomposition of Agricultural Carbon Emission in China. China Population, Resources and Environment 21(8): 80–86. (In Chinese)

    Google Scholar 

  • Li C, Xiao X, Frolking S, et al. (2003) Greenhouse gas emissions from croplands of China. Quaternary Sciences 23(5): 493–503. (In Chinese)

    Google Scholar 

  • Li C, Frolking S, Xiao X, et al. (2005) Modeling impacts of farming management alternatives on CO2, CH4 and N2O emissions: A case study for water management of rice agriculture of China. Global Biogeochemical Cycles 19(3): GB3010. DOI: 10.1029/2004GB002341

    Google Scholar 

  • Li C, Kou Z, Zhang Z, et al. (2011) Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from conservation tillage rice fields. Journal of Agro-Environment Science 30(11): 2362–2367. (In Chinese)

    Google Scholar 

  • Lu F, Wang X, Han B, et al. (2010) Straw return to rice paddy: soil carbon sequestration and increased methane emission. Chinese Journal of Applied Ecology 21(1): 99–108. (In Chinese)

    Google Scholar 

  • Lu F, Wang X, Han B, et al. (2009) Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Global Change Biology 15: 281–305. DOI: 10.1111/j.1365-2486.2008.01743.x

    Article  Google Scholar 

  • Müller C, Elliott J, Chryssanthacopoulos J, et al. (2015) Implications of climate mitigation for future agricultural production. Environmental Research Letters 10: 125004. DOI: 10.1088/1748-9326/10/12/125004

    Article  Google Scholar 

  • Nayak D, Saetnan E, Cheng K, et al. (2015) Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agricultural Ecosystems & Environment 209: 108–124. DOI: 10.1016/j.agee.2015.04.035

    Article  Google Scholar 

  • Ouyang X, Zhou X, Wang Y (2011) Progress in Functions of organic agriculture in soil sequestration and biodiversity. Chinese Agricultural Science Bulletin 27(11): 224–230. (In Chinese)

    Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305: 968–972. DOI: 10.1126/science. 1100103

    Article  Google Scholar 

  • Pan G, Li L, Wu L, et al. (2003) Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biology 10: 79–92. DOI: 10.1111/j.1365-2486.2003.00717.x

    Article  Google Scholar 

  • Pan G, Smith P, Pan W (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture Ecosystems & Environment 129: 344–348. DOI: 10.1016/j.agee.2008.10.008

    Article  Google Scholar 

  • Pan G, Zhou P, Li Z, et al. (2009) Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agriculture Ecosystems & Environment 131: 274–280. DOI: 10.1016/j.agee.2009.01.020

    Article  Google Scholar 

  • Parr J, Sulliva L (2011) Phytolith occluded carbon and silica variability in wheat cultivars. Plant and Soil 342: 165–171. DOI: 10.1007/s11104-010-0680-z

    Article  Google Scholar 

  • Paustian K, Six J, Elliott E, et al. (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147-163. DOI:10.1023/A:1006271331703

  • Peters GP, Davis SJ, Andrew R (2012) A synthesis of carbon in international trade. Biogeosciences 9: 3247–3276. DOI: 10.5194/bg-9-3247-2012

    Article  Google Scholar 

  • Ponsioen TC, Blonk T J (2012) Calculating land use change in carbon footprints of agricultural products as an impact of current land use. Journal of Cleaner Production 28: 120–126. DOI: 10.1016/j.jclepro.2011.10.014

    Article  Google Scholar 

  • Qiu H, Mo H, Bai J, et al. (2012) Analysis of treatment and its factors of livestock manure in rural China: based on the surveys in five provinces. China Rural Economy 3: 78–87. (In Chinese)

    Google Scholar 

  • Qiu J, Li C, Wang L, et al. (2009) Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China. Global Biogeochemical Cycles 23(1): GB1007. DOI: 10.1029/2008GB003180

    Article  Google Scholar 

  • Sanchez B, Iglesias A, Mc Vittie A, et al. (2016) Management of agricultural soils for greenhouse gas mitigation: Learning from a case study in NE Spain. Journal of Environmental Management 170: 37–49. DOI: 10.1016/j.jenvman.2016.01.003

    Article  Google Scholar 

  • Schimel DS, House JI, Hibbard KA, et al. (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414: 169–172. DOI: 10.1038/35102500.

    Article  Google Scholar 

  • Shen M, Yang L, Yao Y, et al. (2007) Long-term effects of fertilizer managements on crop yields and organic carbon storage of a typical rice-wheat agroecosystem of China. Biology and Fertility of Soils 44: 187–200. DOI: 10.1007/s00374-007-0194-x

    Article  Google Scholar 

  • Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. European Journal of Agronomy 20: 229–236. DOI: 10.1016/j.eja.2003.08.002

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, et al. (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture Ecosystems & Environment 118(1): 6–28. DOI: 10.1016/j.agee.2006.06.006

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, et al. (2008) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B 363: 789–813. DOI: 10.1098/rstb.2007.2184.

    Article  Google Scholar 

  • Smith P, Powlson D, Smith J, et al. (2006) Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology 6: 525–539. DOI: 10.1046/j.1365-2486.2000.00331.x

    Article  Google Scholar 

  • Smith P, Haberl H, Popp A., et al. (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology 19(8): 2285–2302. DOI: 10.1111/gcb. 12160

    Article  Google Scholar 

  • Song Z, Müller K, Wang H (2014) Biogeochemical silicon cycle and carbon sequestration in agricultural ecosystems. Earth-Science Reviews 139: 268–278. DOI: 10.1016/j.earscirev.2014.09.009

    Article  Google Scholar 

  • Song Z, Wang H, Strong P, et al. (2014) Phytolith carbon sequestration in China’s croplands. European Journal of Agronomy 53: 10–15. DOI: 10.1016/j.eja.2013.11.004

    Article  Google Scholar 

  • Sun J, Peng H, Chen J, et al. (2016) An estimate of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. Journal of Cleaner Production 112: 2625–2631. DOI: 10.1016/j.jclepro.2015.09.112

    Article  Google Scholar 

  • Sun J, Zhao R, Huang X, et al. (2010) Research on carbon emission estimation and factor decomposition of China from 1995 to 2005. Journal of Natural Resources 25(8): 1284–1295. (In Chinese)

    Google Scholar 

  • Sun T, Song X (2008) Problems on Chinese Agricultural Environmental and Countermeasures. Research of Agricultural Modernization 29(6): 646–649. (In Chinese)

    Google Scholar 

  • Sun Y, Li G, Zhang F, et al. (2005) Status quo and developmental strategy of agricultural residues resources in China. Transactions of the Chinese Society of Agricultural Engineering 21(8): 169–173. (In Chinese)

    Google Scholar 

  • Triberti L, Nastri A, Giordani G, et al. (2008) Can mineral and organic fertilization help sequestrate carbon dioxide in cropland? European Journal of Agronomy 29: 13–20. DOI: 10.1016/j.eja.2008.01.009

  • Wang H, Qin Y, Yu K (2008) Utilization, distribution and exploitation tactics of crop stalk resources in China. Territory and Natural Resources Study 2: 92–93.

    Google Scholar 

  • Wang W, Guo L, Li G, et al. (2015) Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Climatic Chang 128: 57–70. DOI: 10.1007/s10584-014-1289-7

    Article  Google Scholar 

  • Wang W, Koslowski F, Nayak D, et al. (2014) Greenhouse gas mitigation in Chinese agriculture: Distinguishing technical and economic potentials. Global Environmental Change 26: 53–62. DOI: 10.1016/j.gloenvcha.2014.03.008

    Article  Google Scholar 

  • West TO, Marland G (2002a) Net carbon flux from agricultural ecosystems: methodology for full carbon cycle analyses. Environmental Pollution 116, 439–444. DOI: 10.1016/S0269-7491(01)00221-4

    Article  Google Scholar 

  • West TO, Marland G (2002b) A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture Ecosystems & Environment 91: 217–232. DOI: 10.1016/S0167-8809(01)00233-X

    Article  Google Scholar 

  • West T. Post W (2002c) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal 66(6): 1930–1946.

    Article  Google Scholar 

  • Wright AL, Hons FM (2005) Soil carbon and nitrogen storage in aggregates from different tillage and crop regimes. Soil Science Society of America Journal 69(1): 141–147.

    Google Scholar 

  • Wu L, Li L, Zhang H, et al. (2007) Effects of conservation tillage on net carbon flux from farmland ecosystems. Chinese Journal of Ecology 26(12): 2035–2039. (In Chinese)

    Google Scholar 

  • Xu S, Huang G, Li Y (2011) The Research Progress about Effects of agricultural measures on soil carbon content. Chinese Agricultural Science Bulletin 27(7): 259–264. (In Chinese)

    Google Scholar 

  • Xu X, Shi X, Zhao Y, et al. (2012) Simulation of carbon sequestration potential from paddy fields in Jiangsu Province under different tillage practices. Soils 44(2): 253–259. (In Chinese)

    Google Scholar 

  • Yan M, Cheng K, Luo T, et al (2015) Carbon footprint of grain crop production in China–based on farm survey data. Journal of Cleaner Production 104: 130–138. DOI: 10.1016/j.jclepro.2015.05.058

    Article  Google Scholar 

  • Yan H, Cao M, Liu J, et al. (2007) Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agriculture Ecosystems & Environment 121: 325–335. DOI: 10.1016/j.agee.2006.11.008

    Article  Google Scholar 

  • Zhang F, Wang J, Zhang W, et al. (2008) Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica 45(5): 915–924. (In Chinese)

    Google Scholar 

  • Zhou S, Song X, Yan X (2013) Progress in Research on Lowcarbon Rice Production Technology. Chinese Journal of Rice Science 27(2): 213–222. (In Chinese)

    Google Scholar 

  • Zhu L, Yang M, Xu M, et al. (2012) Effects of different fertilization modes on paddy field topsoil carbon content and carbon sequestration duration in South China. Chinese Journal of Applied Ecology 23(1): 87–95. (In Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-guo Liu.

Additional information

http://orcid.org/0000-0003-0978-9936

http://orcid.org/0000-0002-8788-3218

http://orcid.org/0000-0002-3733-3015

http://orcid.org/0000-0003-0582-2874

http://orcid.org/0000-0002-4444-3482

http://orcid.org/0000-0002-0271-4225

http://orcid.org/0000-0002-7953-558X

http://orcid.org/0000-0002-5745-6311

http://orcid.org/0000-0001-9614-4890

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lun, F., Canadell, J.G., He, L. et al. Estimating cropland carbon mitigation potentials in China affected by three improved cropland practices. J. Mt. Sci. 13, 1840–1854 (2016). https://doi.org/10.1007/s11629-015-3813-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3813-2

Keywords