Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Using a Three-Phase Deterministic Model for the Columnar-to-Equiaxed Transition

  • SYMPOSIUM: Solidification Modeling and Microstructure Formation: In Honor of Prof. John Hunt
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

In order to overcome the limitations of previous columnar-to-equiaxed (CET) models, which neglect melt convection and the movement of free equiaxed grains, this article presents a three-phase deterministic CET model. With appropriated multiphase volume-averaging approaches, it is possible to account for nucleation and growth of equiaxed grains ahead of a growing columnar front, the influence of melt convection, and grain sedimentation, and the occurrence of a CET in a casting of engineering scale. Special modeling assumptions ensure that both CET mechanisms, namely, “hard” and “soft” blocking, are tackled. It is highly recommended that both mechanisms should be considered, especially in the situation where grain sedimentation and melt convection are present. Although the current model incorporates almost all the physical variables relevant to a CET event, under special condition of a one-dimensional case, the model still reproduces the results of Hunt’s classical CET approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunt J.D. (1984). Mater. Sci. Eng 65: 75-83

    Article  CAS  Google Scholar 

  2. R.B. Mahapatra and F. Weinberg: Metall. Mater. Trans. B, 1987 vol. 18B, pp. 425-32.

  3. I. Ziv and F. Weinberg: Metall. Mater. Trans. B, 1989, vol. 20B, pp. 731-34.

  4. Flood S.C. and Hunt J.D. (1987). J. Cryst. Growth 82: 543-51

    Article  CAS  Google Scholar 

  5. Flood S.C. and Hunt J.D. (1987). J. Cryst. Growth 82: 552-60

    Article  CAS  Google Scholar 

  6. M. Gaümann, R. Trivedi, and W. Kurz: Mater. Sci. Eng., A, 1997, vols. 226–228, pp. 763-69.

  7. C.-A. Gandin, T. Jalanti, and M. Rappaz: Proc. McWASP VIII,B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1998, pp. 363-74.

  8. Rappaz M. (1989). Int. Mater. Rev. 34: 93-123

    CAS  Google Scholar 

  9. Wang C.Y. and Beckermann C. (1994). Metall. Mater. Trans. A, 25A: 1081-93

    Article  CAS  Google Scholar 

  10. Martorano M.A., Beckermann C., and Gandin C.-A. (2003). Metall. Mater. Trans. A 34A: 1657-74

    Article  Google Scholar 

  11. Wu M. and Ludwig A. (2006). Metall. Mater. Trans. A vol. 37A: 1613-31

    Article  Google Scholar 

  12. Dong H.B., Yang X.L., Lee P.D., and Wang W. (2004). J. Mater. Sci. 39: 7207-12

    Article  CAS  Google Scholar 

  13. Lipton J., Glicksman M.E., and Kurz W. (1984). Mater. Sci. Eng., 65: 57-63

    Article  CAS  Google Scholar 

  14. Gandin Ch.-A. (2000). Iron Steel Inst. Jpn., 40: 971-79

    CAS  Google Scholar 

  15. Ludwig A. and Wu M. (2005). Mater. Sci. Eng., A, 413-414: 109-14

    Google Scholar 

  16. A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3673-83.

  17. Wu M. , Ludwig A., Bührig-Polaczek A., Fehlbier M., and Sahm P.R. (2003). Int. J. Heat Mass Transfer 46: 2819-32

    Article  CAS  Google Scholar 

  18. Ludwig A., Gruber-Pretzler M., Mayer F., Ishmurzin A., and Wu M. (2005). Mater. Sci. Eng., A, 413–414: 485-89

    Google Scholar 

  19. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedemannsdorf, Switzerland, 1989, pp. 65-89.

  20. J. Campbell: Castings, Butterworth Heinemann Ltd., Oxford, United Kingdom, 1991, pp. 151-58.

  21. Wu M., Ludwig A., Pelzer M., and Postl U. (2005). Adv. Eng. Mater., 7: 846-51

    Article  CAS  Google Scholar 

  22. Guo J. and Beckermann C. (2003). Num. Heat Transfer, Part A, 44: 559-67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wu.

Additional information

This article is based on a presentation made in the symposium entitled “Solidification Modeling and Microstructure Formation: In Honor of Prof. John Hunt,” which occurred March 13–15, 2006, during the TMS Spring Meeting in San Antonio, Texas, under the auspices of the TMS Materials Processing and Manufacturing Division, Solidification Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Ludwig, A. Using a Three-Phase Deterministic Model for the Columnar-to-Equiaxed Transition. Metall Mater Trans A 38, 1465–1475 (2007). https://doi.org/10.1007/s11661-007-9175-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9175-9

Keywords