Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Crystallography, Morphology, and Martensite Transformation of Prior Austenite in Intercritically Annealed High-Aluminum Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The crystallography and morphology of the intercritical austenite phase in two high-aluminum steels annealed at 850 °C were examined on the basis of electron backscattered diffraction analysis, in concert with a novel orientation relationship determination and prior austenite reconstruction algorithm. The formed intercritical austenite predominantly shared a Kurdjumov–Sachs-type semicoherent boundary with at least one of the neighboring intercritical ferrite grains. If the austenite had nucleated at high-energy sites (such as a grain corner or edge), no orientation relationship was usually observed. The growth rate of the austenite grains was observed to be slow, causing phase inequilibrium even after extended annealing times. The small austenite grain size and phase fraction were consequently shown to affect martensite start temperature. Both steels had distinct variant pairing tendencies under the intercritically annealed condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. van Dongen: Graph Clustering by Flow Simulation, Ph.D. Thesis, University of Utrecht, 2000.

  2. T. Nyyssönen, M. Isakov, P. Peura, and V.-T. Kuokkala, Metall. Mater. Trans. A, 2016, vol. 47 (6), pp. 2587–2590.

    Article  Google Scholar 

  3. G. Kurdjumov: J. Iron Steel Inst. Lond., 1960, vol. 195, p. 26.

  4. C. I. Garcia and A. J. Deardo, Metall. Mater. Trans. A, 1981, vol. 12 (3), pp. 521–530.

    Article  Google Scholar 

  5. D. Shtansky, K. Nakai, and Y. Ohmori, Acta Mater., 1999, vol. 47 (9), pp. 2619–2632.

    Article  CAS  Google Scholar 

  6. L. Ryde, J. Hagström, and W. B. Hutchinson, Mater. Sci. Forum, 2007, vol. 550, pp. 321–326.

    Article  CAS  Google Scholar 

  7. Z.-D. Li, G. Miyamoto, Z.-G. Yang, and T. Furuhara, Scr. Mater., 2009, vol. 60 (7), pp. 485–488.

    Article  CAS  Google Scholar 

  8. D. P. Datta and A. M. Gokhale, Metall. Mater. Trans. A, 1981, vol. 12 (3), pp. 443–450.

    Article  Google Scholar 

  9. G. R. Speich, V. A. Demarest, and R. L. Miller, Metall. Mater. Trans. A, 1981, vol. 12 (8), pp. 1419–1428.

    Article  Google Scholar 

  10. M. M. Souza, J. R. C. Guimarães, and K. K. Chawla, Metall. Mater. Trans. A, 1982, vol. 13 (4), pp. 575–579.

    Article  Google Scholar 

  11. D. Z. Yang, E. L. Brown, D. K. Matlock, and G. Krauss, Metall. Mater. Trans. A, 1985, vol. 16 (8), pp. 1385–1392.

    Article  CAS  Google Scholar 

  12. C. Cayron, B. Artaud, and L. Briottet, Mater. Charact., 2006, vol. 57 (4-5), pp. 386–401.

    Article  CAS  Google Scholar 

  13. G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, Acta Mater., 2010, vol. 58 (19), pp. 6393–6403.

    Article  CAS  Google Scholar 

  14. L. Germain, N. Gey, R. Mercier, P. Blaineau, and M. Humbert, Acta Mater., 2012, vol. 60 (11), pp. 4551–4562.

    Article  CAS  Google Scholar 

  15. M. Abbasi, D.-I. Kim, T. W. Nelson, and M. Abbasi, Mater. Charact., 2014, vol. 95, pp. 219–231.

    Article  CAS  Google Scholar 

  16. N. Bernier, L. Bracke, L. Malet, and S. Godet, Mater. Charact., 2014, vol. 89, pp. 23–32.

    Article  CAS  Google Scholar 

  17. M. Humbert, P. Blaineau, L. Germain, and N. Gey, Scr. Mater., 2011, vol. 64 (2), pp. 114–117.

    Article  CAS  Google Scholar 

  18. M. Humbert, L. Germain, N. Gey, and E. Boucard, Acta Mater., 2015, vol. 82, pp. 137–144.

    Article  CAS  Google Scholar 

  19. C. Cayron, Mater. Charact., 2014, vol. 94, pp. 93–110.

    Article  CAS  Google Scholar 

  20. E. Gomes and L.A.I. Kestens: IOP Conference Series: Materials Science and Engineering, 2015, vol. 82 (1), p. 012059.

    Article  Google Scholar 

  21. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, Acta Mater., 2003, vol. 51 (6), pp. 1789–1799.

    Article  CAS  Google Scholar 

  22. A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, and A. Borgenstam, Acta Mater., 2012, vol. 60 (20), pp. 7265–7274.

    Article  CAS  Google Scholar 

  23. M. Abbasi, T. W. Nelson, C. D. Sorensen, and L. Wei, Mater. Charact., 2012, vol. 66, pp. 1–8.

    Article  CAS  Google Scholar 

  24. N. Saunders, U. K. Z. Guo, X. Li, A. P. Miodownik, and J. P. Schillé, JOM, 2003, vol. 55 (12), pp. 60–65.

    Article  CAS  Google Scholar 

  25. H. K. D. H. Bhadeshia, Met. Sci., 1981, vol. 15 (4), pp. 175–177.

    Article  CAS  Google Scholar 

  26. D. P. Koistinen and R. E. Marburger, Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  27. S. van Bohemen, M. Santofimia, and J. Sietsma, Scr. Mater., 2008, vol. 58 (6), pp. 488 – 491.

    Article  Google Scholar 

  28. T. Sourmail and V. Smanio, Mater. Sci. Technol., 2013, vol. 29 (7), pp. 883–888.

    Article  CAS  Google Scholar 

  29. F. LePera, Metallography, 1979, vol. 12 (3), pp. 263 – 268.

    Article  CAS  Google Scholar 

  30. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Nat. Methods, 2012, vol. 9, p. 676.

    Article  CAS  Google Scholar 

  31. L. Ryde, Mater. Sci. Technol., 2006, vol. 22 (11), pp. 1297–1306.

    Article  CAS  Google Scholar 

  32. G. Thewlis, Mater. Sci. Technol., 2004, vol. 20 (2), pp. 143–160.

    Article  CAS  Google Scholar 

  33. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom., 2010, vol. 160, pp. 63–68.

    Article  CAS  Google Scholar 

  34. T. Song and B. C. De Cooman, Metall. Mater. Trans. A, 2013, vol. 44 (4), pp. 1686–1705.

    Article  Google Scholar 

  35. M. Abbasi, T. W. Nelson, and C. D. Sorensen, J. Appl. Crystallogr., 2013, vol. 46 (3), pp. 716–725.

    Article  CAS  Google Scholar 

  36. S. Cluff, E. Homer, T. Nelson, R. Song, and D. Fullwood: IOP Conference Series: Materials Science and Engineering, 2018, vol. 375 (1), p. 012012.

    Article  Google Scholar 

  37. L. Germain, D. Kratsch, M. Salib, and N. Gey, Mater. Charact., 2014, vol. 98, pp. 66–72.

    Article  CAS  Google Scholar 

  38. P. Lehto, J. Romanoff, H. Remes, and T. Sarikka, Weld. World, 2016, vol. 60 (4), pp. 673–688.

    Article  CAS  Google Scholar 

  39. J. W. Cahn, Acta Metall., 1956, vol. 4 (6), pp. 572 – 575.

    Article  CAS  Google Scholar 

  40. E. Navara and R. Harrysson, Scr. Metall., 1984, vol. 18 (6), pp. 605 – 610.

    Article  CAS  Google Scholar 

  41. G. Miyamoto, A. Shibata, T. Maki, and T. Furuhara, Acta Mater., 2009, vol. 57 (4), pp. 1120–1131.

    Article  CAS  Google Scholar 

  42. H. Yang and H. K. D. H. Bhadeshia, Scr. Mater., 2009, vol. 60 (7), pp. 493–495.

    Article  CAS  Google Scholar 

  43. J. Bokros and E. Parker, Acta Metall., 1963, vol. 11 (12), pp. 1291 – 1301.

    Article  CAS  Google Scholar 

  44. H. Okamoto, O. Muneo, and I. Tamura, Trans. Jpn. Inst. Met., 1978, vol. 19 (12), pp. 674–684.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Graduate School CE Tampere, the Walter Ahlström Foundation, KAUTE Foundation, TES Foundation, and the Tampere University of Technology. The authors are grateful to the Advanced Steel Processing and Products Research Center in the Colorado School of Mines for allowing the use of the TA DIL805 dilatometer for these studies. The reconstruction algorithm and associated \(Matlab^{\textregistered }\) script presented here is made freely available and can be obtained on request from the corresponding author or from the web address: https://github.com/nyyssont/parent_austenite_reconstruction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nyyssönen.

Additional information

Manuscript submitted February 14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyyssönen, T., Peura, P. & Kuokkala, VT. Crystallography, Morphology, and Martensite Transformation of Prior Austenite in Intercritically Annealed High-Aluminum Steel. Metall Mater Trans A 49, 6426–6441 (2018). https://doi.org/10.1007/s11661-018-4904-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4904-9