Abstract
The crystallography and morphology of the intercritical austenite phase in two high-aluminum steels annealed at 850 °C were examined on the basis of electron backscattered diffraction analysis, in concert with a novel orientation relationship determination and prior austenite reconstruction algorithm. The formed intercritical austenite predominantly shared a Kurdjumov–Sachs-type semicoherent boundary with at least one of the neighboring intercritical ferrite grains. If the austenite had nucleated at high-energy sites (such as a grain corner or edge), no orientation relationship was usually observed. The growth rate of the austenite grains was observed to be slow, causing phase inequilibrium even after extended annealing times. The small austenite grain size and phase fraction were consequently shown to affect martensite start temperature. Both steels had distinct variant pairing tendencies under the intercritically annealed condition.
Similar content being viewed by others
References
S. van Dongen: Graph Clustering by Flow Simulation, Ph.D. Thesis, University of Utrecht, 2000.
T. Nyyssönen, M. Isakov, P. Peura, and V.-T. Kuokkala, Metall. Mater. Trans. A, 2016, vol. 47 (6), pp. 2587–2590.
G. Kurdjumov: J. Iron Steel Inst. Lond., 1960, vol. 195, p. 26.
C. I. Garcia and A. J. Deardo, Metall. Mater. Trans. A, 1981, vol. 12 (3), pp. 521–530.
D. Shtansky, K. Nakai, and Y. Ohmori, Acta Mater., 1999, vol. 47 (9), pp. 2619–2632.
L. Ryde, J. Hagström, and W. B. Hutchinson, Mater. Sci. Forum, 2007, vol. 550, pp. 321–326.
Z.-D. Li, G. Miyamoto, Z.-G. Yang, and T. Furuhara, Scr. Mater., 2009, vol. 60 (7), pp. 485–488.
D. P. Datta and A. M. Gokhale, Metall. Mater. Trans. A, 1981, vol. 12 (3), pp. 443–450.
G. R. Speich, V. A. Demarest, and R. L. Miller, Metall. Mater. Trans. A, 1981, vol. 12 (8), pp. 1419–1428.
M. M. Souza, J. R. C. Guimarães, and K. K. Chawla, Metall. Mater. Trans. A, 1982, vol. 13 (4), pp. 575–579.
D. Z. Yang, E. L. Brown, D. K. Matlock, and G. Krauss, Metall. Mater. Trans. A, 1985, vol. 16 (8), pp. 1385–1392.
C. Cayron, B. Artaud, and L. Briottet, Mater. Charact., 2006, vol. 57 (4-5), pp. 386–401.
G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, Acta Mater., 2010, vol. 58 (19), pp. 6393–6403.
L. Germain, N. Gey, R. Mercier, P. Blaineau, and M. Humbert, Acta Mater., 2012, vol. 60 (11), pp. 4551–4562.
M. Abbasi, D.-I. Kim, T. W. Nelson, and M. Abbasi, Mater. Charact., 2014, vol. 95, pp. 219–231.
N. Bernier, L. Bracke, L. Malet, and S. Godet, Mater. Charact., 2014, vol. 89, pp. 23–32.
M. Humbert, P. Blaineau, L. Germain, and N. Gey, Scr. Mater., 2011, vol. 64 (2), pp. 114–117.
M. Humbert, L. Germain, N. Gey, and E. Boucard, Acta Mater., 2015, vol. 82, pp. 137–144.
C. Cayron, Mater. Charact., 2014, vol. 94, pp. 93–110.
E. Gomes and L.A.I. Kestens: IOP Conference Series: Materials Science and Engineering, 2015, vol. 82 (1), p. 012059.
S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, Acta Mater., 2003, vol. 51 (6), pp. 1789–1799.
A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, and A. Borgenstam, Acta Mater., 2012, vol. 60 (20), pp. 7265–7274.
M. Abbasi, T. W. Nelson, C. D. Sorensen, and L. Wei, Mater. Charact., 2012, vol. 66, pp. 1–8.
N. Saunders, U. K. Z. Guo, X. Li, A. P. Miodownik, and J. P. Schillé, JOM, 2003, vol. 55 (12), pp. 60–65.
H. K. D. H. Bhadeshia, Met. Sci., 1981, vol. 15 (4), pp. 175–177.
D. P. Koistinen and R. E. Marburger, Acta Metall., 1959, vol. 7, pp. 59–60.
S. van Bohemen, M. Santofimia, and J. Sietsma, Scr. Mater., 2008, vol. 58 (6), pp. 488 – 491.
T. Sourmail and V. Smanio, Mater. Sci. Technol., 2013, vol. 29 (7), pp. 883–888.
F. LePera, Metallography, 1979, vol. 12 (3), pp. 263 – 268.
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Nat. Methods, 2012, vol. 9, p. 676.
L. Ryde, Mater. Sci. Technol., 2006, vol. 22 (11), pp. 1297–1306.
G. Thewlis, Mater. Sci. Technol., 2004, vol. 20 (2), pp. 143–160.
F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom., 2010, vol. 160, pp. 63–68.
T. Song and B. C. De Cooman, Metall. Mater. Trans. A, 2013, vol. 44 (4), pp. 1686–1705.
M. Abbasi, T. W. Nelson, and C. D. Sorensen, J. Appl. Crystallogr., 2013, vol. 46 (3), pp. 716–725.
S. Cluff, E. Homer, T. Nelson, R. Song, and D. Fullwood: IOP Conference Series: Materials Science and Engineering, 2018, vol. 375 (1), p. 012012.
L. Germain, D. Kratsch, M. Salib, and N. Gey, Mater. Charact., 2014, vol. 98, pp. 66–72.
P. Lehto, J. Romanoff, H. Remes, and T. Sarikka, Weld. World, 2016, vol. 60 (4), pp. 673–688.
J. W. Cahn, Acta Metall., 1956, vol. 4 (6), pp. 572 – 575.
E. Navara and R. Harrysson, Scr. Metall., 1984, vol. 18 (6), pp. 605 – 610.
G. Miyamoto, A. Shibata, T. Maki, and T. Furuhara, Acta Mater., 2009, vol. 57 (4), pp. 1120–1131.
H. Yang and H. K. D. H. Bhadeshia, Scr. Mater., 2009, vol. 60 (7), pp. 493–495.
J. Bokros and E. Parker, Acta Metall., 1963, vol. 11 (12), pp. 1291 – 1301.
H. Okamoto, O. Muneo, and I. Tamura, Trans. Jpn. Inst. Met., 1978, vol. 19 (12), pp. 674–684.
Acknowledgments
This study was supported by the Graduate School CE Tampere, the Walter Ahlström Foundation, KAUTE Foundation, TES Foundation, and the Tampere University of Technology. The authors are grateful to the Advanced Steel Processing and Products Research Center in the Colorado School of Mines for allowing the use of the TA DIL805 dilatometer for these studies. The reconstruction algorithm and associated \(Matlab^{\textregistered }\) script presented here is made freely available and can be obtained on request from the corresponding author or from the web address: https://github.com/nyyssont/parent_austenite_reconstruction.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted February 14, 2018.
Rights and permissions
About this article
Cite this article
Nyyssönen, T., Peura, P. & Kuokkala, VT. Crystallography, Morphology, and Martensite Transformation of Prior Austenite in Intercritically Annealed High-Aluminum Steel. Metall Mater Trans A 49, 6426–6441 (2018). https://doi.org/10.1007/s11661-018-4904-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-018-4904-9