Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modification of Inclusions in Molten Steel by Mg-Ca Transfer from Top Slag: Experimental Confirmation of the ‘Refractory-Slag-Metal-Inclusion (ReSMI)’ Multiphase Reaction Model

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

High-temperature experiments and Refractory-Slag-Metal-Inclusion (ReSMI) multiphase reaction simulations were carried out to determine the effect of the ladle slag composition on the formation behavior of non-metallic inclusions in molten steel. Immediately after the slag-metal reaction, magnesium migrated to the molten steel and a MgAl2O4 spinel inclusion was formed due to a reaction between magnesium and alumina inclusions. However, the spinel inclusion changed entirely into a liquid oxide inclusion via the transfer of calcium from slag to metal in the final stage of the reaction. Calcium transfer from slag to metal was more enhanced for lower SiO2 content in the slag. Consequently, the spinel inclusion was modified to form a liquid CaO-Al2O3-MgO-SiO2 inclusion, which is harmless under steelmaking conditions. The modification reaction was more efficient as the SiO2 content in the slag decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. E. Sunami, S. Nozaki, Y. Tamaou and T. Miura: Tetsu-to-Haganė., 1982, vol. 68, pp. S248.

    Google Scholar 

  2. O. Suzuki, M. Oguchi, K. Nohara, T. Emi and T. Mihara: Tetsu-to-Haganė., 1982, vol.68, pp. S249.

    Google Scholar 

  3. M. Hojo, R. Nakao, T. Umezaki, H. Kawai, S. Tanaka and S. Fukumoto: ISIJ Int., 1996, vol. 36, pp. S128-31.

    Article  Google Scholar 

  4. H. Todoroki and K. Mizno: ISIJ. Int., 2004, vol. 44, pp. 1350-57.

    Article  Google Scholar 

  5. J. H. Park and D. S. Kim: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 495-502.

    Article  Google Scholar 

  6. J. H. Park and Y. B. Kang: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 791-97.

    Article  Google Scholar 

  7. J. H. Park: Calphad, 2007, vol. 31, pp. 428-37.

    Article  Google Scholar 

  8. J. H. Park: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 657-63.

    Article  Google Scholar 

  9. J. H. Park: Mater. Sci. Eng. A, 2007, vol. 472, pp. 43-51.

    Article  Google Scholar 

  10. J. H. Park and H. Todoroki: ISIJ. Int., 2010, vol. 50, pp. 1333-46.

    Article  Google Scholar 

  11. M. Jiang, X.H. Wang and W. J. Wang: Steel Res. Int., 2010 vol. 81, pp. 759-65.

    Article  Google Scholar 

  12. Z. Deng and M. Zhu: ISIJ. Int., 2013, vol. 53, pp. 450-58.

    Article  Google Scholar 

  13. A. Kirsch-Racine, A. Bomont-Arzur, and M. Confente, Rev. Metall., 2007, vol. 104, pp. 591-97.

    Article  Google Scholar 

  14. C. Catellier, H. Gaye, J. Lehmann, J.N. Pontoire, and F. Castro: Proc. Steelmaking conf., ISS-AIME, 1991, pp. 827–34.

  15. L. E. K. Holapa and A. S. Hell: J. Mater. Process. Technol.,1995, vol. 53, pp. 177-86.

    Article  Google Scholar 

  16. R. V. Väinölä, L. E. K. Holapa and P. H. J. Karvonen: J. Mater. Process. Technol.,1995, vol. 53, pp. 453-65.

    Article  Google Scholar 

  17. B. Korousic, F. Tehovnik and B. Arh: Steel Res., 2001, vol. 72, pp. 35-39.

    Article  Google Scholar 

  18. L. Holappa, M. Hämäläinen, M. Liukkonen and M. Lind: Ironmak. Steelmak., 2003, vol. 30, pp. 111-15.

    Article  Google Scholar 

  19. J. C. Pires and A. Carcia: R. Esc. Minas, 2004, vol. 57, pp. 183-89.

    Article  Google Scholar 

  20. S. K. Choudhary and A. Ghosh: ISIJ. Int., 2008, vol. 48, pp. 1552-59.

    Article  Google Scholar 

  21. N. Verma, P. C. Pistorius, R. J. Fruehan, M. Potter, M. Lind and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 711-19.

    Article  Google Scholar 

  22. N. Verma, P. C. Pistorius, R. J. Fruehan, M. Potter, M. Lind and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720-29.

    Article  Google Scholar 

  23. N. Verma, P. C. Pistorius, R. J. Fruehan, M. S. Potter, H. G. Oltmann and E. B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830-40.

    Article  Google Scholar 

  24. A.K.J. Venkatesan and P.G. Venkatakrishnan: Adv. Mater. Res., 2012, vol. 585, pp. 364–68.

  25. F. Jiang, G. Cheng, G. Qian, Y. Xie, Q. Rui, and L. Yang: Steel Res. Int., 2013, vol. 84, pp. 554-59.

    Article  Google Scholar 

  26. M. Jiang, X. H. Wang, D. Yang, S. L. Lei, and K. P. Wang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2573-83.

    Article  Google Scholar 

  27. G. Xu, Z, Jiang and Y. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2411-20.

    Article  Google Scholar 

  28. D. Kumar and P.C. Pistorius: Proc. Molten16 Conf., TMS, 2016, pp. 145–53.

  29. J.H. Shin and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 46-60.

    Article  Google Scholar 

  30. www.factsage.com. (accessed March 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted April 10, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J.H., Park, J.H. Modification of Inclusions in Molten Steel by Mg-Ca Transfer from Top Slag: Experimental Confirmation of the ‘Refractory-Slag-Metal-Inclusion (ReSMI)’ Multiphase Reaction Model. Metall Mater Trans B 48, 2820–2825 (2017). https://doi.org/10.1007/s11663-017-1080-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1080-z

Keywords