Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Self-assembled Ge QDs Formed by High-Temperature Annealing on Al(Ga)As (001)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work studies the spontaneous self-assembly of Ge QDs on AlAs, GaAs and AlGaAs by high-temperature in␣situ annealing using molecular beam epitaxy (MBE). The morphology of Ge dots formed on AlAs were observed by atom probe tomography, which revealed nearly spherical QDs with diameters approaching 10 nm and confirmed the complete absence of a wetting layer. Reflection high-energy electron diffraction and atomic force microscopy of Ge annealed under similar conditions on GaAs and Al0.3Ga0.7As surfaces revealed the gradual suppression of QD formation with decreasing Al-content of the buffer. To investigate the prospects of using encapsulated Ge dots for upconverting photovoltaics, in which photocurrent can still be generated from photons with energy less than the host bandgap, Ge QDs were embedded into the active region of III–V PIN diodes by MBE. It was observed that orders of magnitude higher short-circuit current is obtained at photon energies below the GaAs bandgap compared with a reference PIN diode without Ge QDs. These results demonstrate the promise of Ge QDs for upconverting solar cells and the realization of device-quality integration of group IV and III–V semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Petroff, A.C. Gossard, A. Savage, and W. Wiegmann, J. Cryst. Growth 46, 172 (1979).

    Article  Google Scholar 

  2. T.S. Kuan and C.-A. Chang, J. Appl. Phys. 54, 4408 (1983).

    Article  Google Scholar 

  3. M.K. Hudait, Y. Zhu, N. Jain, and J.L. Hunter, J. Vacuum Sci. Technol. B 31, 1 (2013).

    Article  Google Scholar 

  4. R. Fischer, W.T. Masselink, J. Klem, T. Henderson, T.C. McGlinn, M.V. Klein, H. Morkoc, J.H. Mazur, and J. Washburn, J. Appl. Phys. 58, 374 (1985).

    Article  Google Scholar 

  5. M.A. Stan, P.R. Sharps, N.S. Fatemi, F.Spadafora, D.Aiken, and H.Q. Hou, Design and production of extremely radiation-hard 26% InGaP/GaAs/Ge triple-junction solar cells, Conference Record of the 28th IEEE PVSC, September 15–22, Anchorage, AK, pp. 1374 (2000).

  6. T. Takamoto, M. Kaneiwa, M. Imaizumi, and M. Yamaguchi, Prog. Photovoltaics 13, 495 (2005).

    Article  Google Scholar 

  7. M.J. Archer, D.C. Law, S. Mesropian, M. Haddad, C.M. Fetzer, A.C. Ackerman, C. Ladous, R.R. King, and H.A. Atwater, Appl. Phys. Lett. 92, 103503 (2008).

    Article  Google Scholar 

  8. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, and N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007).

    Article  Google Scholar 

  9. Y. Ujiie and T. Nishinaga, Jpn. J. Appl. Phys. 28, L337 (1989).

    Article  Google Scholar 

  10. T. Nishinaga, J. Cryst. Growth 237–239, 1410 (2002).

    Article  Google Scholar 

  11. M. Shichijo, R. Nakane, S. Sugahara, and S. Takagi, Jpn. J. Appl. Phys. 46, 5930 (2007).

    Article  Google Scholar 

  12. J. Stangl, V. Holý, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).

    Article  Google Scholar 

  13. B.A. Joyce and D.D. Vvedensky, Mater. Sci. Eng. R 46, 127 (2004).

    Article  Google Scholar 

  14. Y.-W. Mo, D.E. Savage, B.S. Swartzentruber, and M.G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).

    Article  Google Scholar 

  15. C.S. Peng, Q. Huang, W.Q. Cheng, J.M. Zhou, Y.H. Zhang, T.T. Sheng, and C.H. Tung, Phys. Rev. B 57, 8805 (1998).

    Article  Google Scholar 

  16. W. van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).

    Article  Google Scholar 

  17. R. Conradt and J. Aengenheister, Solid State Commun. 10, 321 (1972).

    Article  Google Scholar 

  18. M.A. Wistey, V. Patel, J.L. Loof, W.A. O’Brien, M. Qi, A.J. Erdman, and C.A. Stephenson, Analysis and Design of Core-Shell Upconverting Nanostructures (CSUNs), 40th IEEE Photovoltaic Specialists Conference (PVSC), June 8–13, paper #921 (2014).

  19. M. Qi, C.A. Stephenson, V. Protasenko, W.A. O’Brien, A. Mintairov, H. Xing, and M.A. Wistey, Appl. Phys. Lett. 104, 073113 (2014).

    Article  Google Scholar 

  20. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).

    Article  Google Scholar 

  21. G.S. Solomon, J.A. Trezza, A.F. Marshall, and J.S. Harris Jr., Phys. Rev. Lett. 76, 952 (1996).

    Article  Google Scholar 

  22. W. Wu, J.R. Tucker, G.S. Solomon, and J.S. Harris Jr, Appl. Phys. Lett. 71, 1083 (1997).

    Article  Google Scholar 

  23. D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H.H. Solak, H. Sigg, R.T. Lechner, E. Winterberger, S. Birner, V. Holý, and G. Bauer, Nano Lett. 7, 3150 (2007).

    Article  Google Scholar 

  24. O.C. Hellman, J.A. Vandenbroucke, J. Rusing, D. Isheim, and D.N. Seidman, Microsc. Microanal. 6, 437 (2000).

    Google Scholar 

  25. K. Reyes, P. Smereka, D. Nothern, J.M. Millunchick, S. Bietti, C. Somaschini, S. Sanguinetti, and C. Frigeri, Phys. Rev. B 87, 165406 (2013).

    Article  Google Scholar 

  26. C.K. Chia, J.R. Dong, D.Z. Chi, A. Sridhara, A.S.W. Wong, M. Suryana, G.K. Dalapati, S.J. Chua, and S.J. Lee, Appl. Phys. Lett. 92, 141905 (2008).

    Article  Google Scholar 

  27. F.R. Schmid, Ternary Alloys, Vol. 9 (Weinheim: VCH, 1994), p. 97.

    Google Scholar 

  28. H. Adhikari, A.F. Marshall, I.A. Goldthorpe, C.E.D. Chidsey, and P.C. McIntyre, ACS Nano. 1, 415 (2007).

    Article  Google Scholar 

  29. J.E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization (Boca Raton: CRC, 2007), p. 36.

    Book  Google Scholar 

  30. T. Maeda and Hitoshi Tanaka, J. Cryst. Growth 201/202, 194 (1999).

    Article  Google Scholar 

  31. A.P. Alivisatos, Science 271, 933 (1996).

    Article  Google Scholar 

  32. H.C. Casey Jr, D.D. Sell, and K.W. Wecht, J. Appl. Phys. 46, 250 (1975).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under CBET-1438608, and by the Notre Dame Integrated Imaging Facility and MIND center. The authors declare no financial conflicts of interest. The authors also thank Alexander Mintairov for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. O’Brien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, W.A., Qi, M., Yan, L. et al. Self-assembled Ge QDs Formed by High-Temperature Annealing on Al(Ga)As (001). J. Electron. Mater. 44, 1338–1343 (2015). https://doi.org/10.1007/s11664-014-3583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3583-6

Keywords