Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Superplastic Forming 40 Years and Still Growing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In late 1964 Backofen, Turner & Avery, at MIT, published a paper in which they described the “extraordinary formability” exhibited when fine-grain zinc-aluminum eutectoid (Zn 22 Al) was subjected to bulge testing under appropriate conditions. They concluded their research findings with the following insightful comment “even more appealing is the thought of applying to superplastic metals forming techniques borrowed from polymer and glass processing.” Since then their insightful thought has become a substantial reality with thousands of tons of metallic sheet materials now being superplastically formed each year. This paper reviews the significant advances that have taken place over the past 40 years including alloy developments, improved forming techniques and equipment, and an ever increasing number of commercial applications. Current and likely future trends are discussed including; applications in the aerospace and automotive markets, faster-forming techniques to improve productivity, the increasing importance of computer modeling and simulation in tool design and process optimization and new alloy developments including superplastic magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. Popular Mechanics, Aug. 1964, p 62–68

  2. Backofen W.A., Avery D.H., Turner J.R. (1964) Superplasticity in Al-Zn Alloy. Trans. Am. Soc. Metals 57:980

    Google Scholar 

  3. T.G. Langdon, Towards Innovation in Superplasticity, S. Hori, M. Tokizane, and N. Furshino, Eds. Fundamental Aspects of Superplasticity, JSRS, Japan, 1991, p 3–12

  4. I.I. Novikov, Superplasticity in Advanced Materials, T.G. Langdon, Ed. Fundamental Aspects of Superplasticity ICSAM, Moscow, 1994, p 3–11

  5. Underwood E.E. (1962) A Review of Superplasticity and Related Phenomena, J. Met. 14:914

    CAS  Google Scholar 

  6. Bochvor and Sviderskajo, Superplasticity in Zinc-Aluminium Alloys, Izvest. Akad. Nauk SSSR, OTN, 1945, N9, 821

  7. MIT 3.12 Lab Report. March 1964

  8. Private Communication with Greg Garmong, 2005

  9. Pearson C.E. (1934) The Viscous Properties of Extruded Eutectic Alloys of Lead-Tian and Bismuth-Tin. J. Inst. Metals 54:111

    Google Scholar 

  10. Field D.S. Jr., Backofen W.A. (1959) Temperature and Rate Dependence of Strain Hardening in Aluminium Alloy 2024-0. Trans. ASM 51:946

    Google Scholar 

  11. Private Communication with Dr. Fields

  12. US Patent #1120007 “Forming of Superplastic Alloy Sheet”

  13. D.S. Fields Jr., “The Promise of Superplasticity”, IBM document EN200276, 1972

  14. Patent Number US 6581428 “Method and Apparatus for Superplastic Forming”

  15. Patent Number US 5974847 “Superplastic Forming Process”

  16. Attendees of Capenhurst Conference 1969 on Superplastic Forming

  17. Hundy B.B. (1969) Plasticity and Superplasticity Inst Met London. Rev. Con. Ser. 2(3):73

    Google Scholar 

  18. D. North, Superplastic Alloy for Auto Body Construction, Sheet Metal Ind. 1970, p P13–P16

  19. Private Communication with Prof. Valiev, 2005

  20. British Patent Number 1387586 “Grain Refinement and Superplastic Forming of an Aluminum Base Alloy”

  21. R. Grimes, M.J. Stowell, and B.M Watts, Superplastic Aluminum Based Alloys, Metal Technol., 1976, 3, p 154–160

  22. B.M Watts, M.J. Stowell, B.L. Baikie, and D.G.E Owen, Superplastically in Al-Cu-Zr Alloys, Met. Sci., 1976, (Part 1 and 2) p 189–206

  23. J.A.F. Buchanon, Innovation Management in Metallurgy, Inst. Mat. Rev. Courses Ser., 1975, 3(4), p 8111-75-T

  24. US Patent Number 4045986 “Forming Ductile Materials”

  25. D.B. Laycock, Superplastic Forming of Sheet Metal, Superplastic Forming of Structural Alloys, N.E. Paton and C.H. Hamilton, Ed. (NY), AIME, 1982, p 257–271

  26. A.J. Barnes, Design. Optimization for Superplasticity, TMS/AIME Conference in San Diego, 1982

  27. US Patent No. 3927817 “Method for making Metallic Sandwich Structures”

  28. British Patent No. 1398929 “Joining and Forming Sheet Metal Members” and 1429054 “Forming of Metal Panels”

  29. C.H. Hamilton, Superplasticity in Titanium Alloys, Superplastic Forming Conference, ASM, 1984

  30. C.J. Hamilton, Air Force Perspective on SPF and SPF/DB Titanium Technology, Ibid, p 63–69

  31. R. Stephen, Designing for Superplastic Alloy, AGARD Lecture Ser., 1989, 168, p 7.1–7.37

  32. M. Botolini, Rohr Industries, Boeing Superplastic Forming Seminar Proceeding, Oct 18, 1991

  33. N. Ridley and Z.C. Wang, Cavitation in Superplastic ICSASM194 Met Sciences form 170-172, 1940, p 1997–186

  34. US Patent Number 4092181 “Method of Imparting a Fine Grain Structure to Aluminum Alloys having Precipitating Constituents”

  35. J. Pilling, “Effect of Hydrostatic Pressure Cavitation During Superplastic Deformation of SUPRAL220”, Superplasticity in Aerospace – Aluminum. Cranfield July 1985, p 136–145

  36. A.J. Barnes, “Commercial Superplastic Aluminum Alloys – Opportunity and Challenges”, Ibid, p 424–447

  37. C.C. Bampton, A.K. Ghosh, and M.W. Mahoney, “The Causes, Effects and Control of Cavitation in Superplastic 7475 Aluminum Airframe Structures”, Ibid, p 1–35

  38. A.J. Barnes, The Industrial Application of Aluminum Superplastic Forming, MRS Symp. Proc., 1999, 601 p 207–221

  39. L. Hefli, Production of SPF and SPF/DB Parts for Fights Aircraft SPF, Training Seminar Proceedings, 1991

  40. P.E. Krajewski and J.G. Schroth, General Motors QPF Process, ICSAM, Chengdu, China, 2006

  41. A.T. Morales, Evolution of Die Coating Superplastic Forming Processes, Adv. Superplast. Superplastic Form., TMS Annual Meeting, 2004, p 51–57

  42. A.K. Ghosh and C.H. Hamilton, Superplastic Forming of a Long Rectangular Box Section, ASM Conference in Process Modeling, 1908, p 303–331

  43. R.S. Sadeghi and Z.S Pursell, Met. Sci. Forum, 1994, 170-172, p 571–576

    Article  Google Scholar 

  44. N. Rebelo and T.B. Wertheimer, Finite Element Simulation of Superplastic Forming, Proc. 16th North American Manufacturing Research (Douf. Urbana IL), 1998

  45. Massoni E., Bellet M., Arenot J.L. (1988) This Sheet Forming Numerical Analysis. Modeling of Metal Forming Processes, Sophia Antipolis, France p 187–196

    Google Scholar 

  46. J. Bonet, R.D. Wood, and A.H.S. Wargadupuira, Int J. Numerical Methods, 30, 1990, p 1719–1737

    Article  Google Scholar 

  47. N. Chandra, S.C. Rama, and R.E. Goforth, Process Modeling of SPF Processes using Four Different Computational Methods, Superplast Adv Mater, Jpn. Soc. Res. Superplast. 1991, p 837–844

  48. Barnes A.J. (2000) Industrial Applications of Superplastic Forming – Trends and Prospects. Mat. Sci. Forum 357-359:3–15

    Article  Google Scholar 

  49. Barnes A.J. (1999) Superplastic Aluminum Forming – Expanding its Techno-economic Niche. Mat. Sci. Forum 304-306:785–796

    Article  CAS  Google Scholar 

  50. Mahony M., Barnes A.J., Bihgel W.H., Fuller C. (2003) Superplastic Forming of 7475 Al Sheet After Friction Stir Processing (FSP), Mat. Sci. Forum. 447-448:505–512

    Google Scholar 

  51. Wittenauer J., Nieh T.G., Wadsworth J. (1992) A First Report on Superplastic Gas Pressure Forming of Ceramic Sheet. Metallurgica 26:551–556

    CAS  Google Scholar 

  52. T. Waniuk, J. Schroers, and W.L. Johnson, Time Scales of Crystallization in Viscous Flow of the Bulk Glass-Forming Zr. Ti. Ni. Cu. Be. Alloy, Phys. Rev. B, 2003, 67, p 184203

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.J. Barnes.

Additional information

This article was presented at Materials Science & Technology 2006, Innovations in Metal Forming symposium held in Cincinnati, OH, October 15-19, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, A. Superplastic Forming 40 Years and Still Growing. J. of Materi Eng and Perform 16, 440–454 (2007). https://doi.org/10.1007/s11665-007-9076-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9076-5

Keywords