Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Corrosion Behavior of Smy(FexNi1−x)4Sb12 (0.40 ≤ x ≤ 0.80) in NaCl Solutions Studied by Electron Microscopy and ICP-AES

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Filled skutterudites are currently studied as thermoelectric materials to be used in the automotive and nautical field; the study of their resistance to a saline environment is therefore mandatory. To this purpose, the corrosion behavior of several compositions belonging to the Smy(FexNi1−x)4Sb12 skutterudites system was investigated by immersing samples in differently concentrated (0.1 and 0.5 M) NaCl solutions. The effect of the treatment was analyzed both by SEM–EDS on the sample surface and at fixed times by ICP-AES on the solution. The formation of an oxide layer was observed on the surface of all the samples: the film results uniformly grown on specimens treated in NaCl at the lower concentration, while it is cracked and not spread over the whole surface in the other samples. Relying on the oxide layer thickness, the oxidation resistance results to increase with increasing the Fe content; correspondingly, the Sb concentration in the more diluted solution decreases at each time considered with increasing the Fe amount, pointing at a strict correlation between the cationic release and the oxide formation, and suggesting a possible mechanism for the growth of the protective film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Fu, X. Su, Y. Yan, W. Liu, Z. Zhang, X. She, C. Uher, and X. Tang, Thermoelectric Properties of Cu/Ag Doped Type-III, Ba24Ge100 Clathrates, J. Solid State Chem., 2017, 253, p 414–420

    Article  CAS  Google Scholar 

  2. A. Tavassoli, F. Failamani, A. Grytsiv, G. Rogl, P. Heinrich, H. Müller, E. Bauer, M. Zehetbauer, and P. Rogl, On the Half-Heusler Compounds Nb1−x{Ti, Zr, Hf}xFeSb: Phase Relations, Thermoelectric Properties at Low and High Temperature, and Mechanical Properties, Acta Mater., 2017, 135, p 263–276

    Article  CAS  Google Scholar 

  3. R. Carlini, C. Artini, G. Borzone, R. Masini, G. Zanicchi, and G.A. Costa, Synthesis and Characterization of the Compound CoSbS, J. Therm. Anal. Calorim., 2011, 103(1), p 23–27

    Article  CAS  Google Scholar 

  4. R. Chmielowski, S. Bhattacharya, W. Xie, S. Jacob, K. Moriya, A. Weidenkaff, G.K.H. Madsen, and G. Dennler, High Thermoelectric Performance of Tellurium Doped Paracostibite, J. Mater. Chem. C, 2016, 4(15), p 3094–3100

    Article  CAS  Google Scholar 

  5. R. Carlini, G. Zanicchi, G. Borzone, N. Parodi, and G.A. Costa, Synthesis and Characterization of the Intermetallic Compound NiSbS, J. Therm. Anal. Calorim., 2012, 108(2), p 793–797

    Article  CAS  Google Scholar 

  6. R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Thermoelectric Properties of Co Substituted Synthetic Tetrahedrite, Acta Mater., 2015, 100, p 266–274

    Article  CAS  Google Scholar 

  7. R. Carlini, D. Marré, I. Pallecchi, R. Ricciardi, and G. Zanicchi, Thermoelectric Properties of Zn4Sb3 Intermetallic Compound Doped with Aluminum and Silver, Intermetallics, 2014, 45, p 60–64

    Article  CAS  Google Scholar 

  8. B.C. Sales, Filled Skutterudites, Handbook on the Physics and Chemistry of Rare Earths, Vol 33, K.A. Gschneidner, Jr., J.-C.G. Bünzli, and V.K. Pecharsky, Ed., North Holland, Amsterdam, 2003, p 1–34

    Google Scholar 

  9. C. Uher, Skutterudite-Based Thermoelectric, Thermoelectrics Handbook—Macro to Nano, D.M. Rowe, Ed., Taylor and Francis, New York, 2006, p 1–17

    Google Scholar 

  10. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, New and Old Concepts in Thermoelectric Materials, Angew. Chem. Int. Ed., 2009, 48(46), p 8616–8639

    Article  CAS  Google Scholar 

  11. G.J. Snyder and E.S. Toberer, Complex Thermoelectric Materials, Nat. Mater., 2008, 7, p 105–114

    Article  CAS  Google Scholar 

  12. C. Uher, In Search of Efficient n-Type Skutterudite Thermoelectrics, in Proceedings of the XXI International Conference on Thermoelectrics (2002), pp. 35–41.

  13. B. Khan, M. Yazdani-Kachoei, H.A. Rahanamaye Aliabad, I. Khan, S. Jalali-Asadabadi, and I. Ahmad, Effects of Chemical Potential on the Thermoelectric Performance of Alkaline-Earth Based Skutterudites (AFe4Sb12, A = Ca, Sr and Ba), J. Alloys Compd., 2017, 694, p 253–260

    Article  CAS  Google Scholar 

  14. B. Bérardan, E. Alleno, C. Godart, O. Rouleau, and J. Rodriguez-Carvajal, Preparation and Chemical Properties of the Skutterudites (Ce-Yb)yFe4−x(Co/Ni)xSb12, Mater. Res. Bull., 2005, 40(3), p 537–551

    Article  Google Scholar 

  15. A. Kaltzoglou, P. Vaqueiro, K.S. Knight, and A.V. Powell, Synthesis, Characterization and Physical Properties of the Skutterudites YbxFe2Ni2Sb12 (0 ≤ x ≤ 0.4), J. Solid State Chem., 2012, 193, p 36–41

    Article  CAS  Google Scholar 

  16. T. Dahal, Q. Jie, W. Liu, K. Dahal, C. Guo, Y. Lan, and Z. Ren, Effect of Triple Fillers in Thermoelectric Performance of p-Type Skutterudites, J. Alloys Compd., 2015, 623, p 104–108

    Article  CAS  Google Scholar 

  17. L. Zhang, N. Melnychenko-Koblyuk, E. Royanian, A. Grytsiv, P. Rogl, and E. Bauer, Influence of Filler Element and Ni-Substitution on Thermoelectric Properties of Multi-filled Skutterudites, J. Alloys Compd., 2010, 504, p 53–59

    Article  CAS  Google Scholar 

  18. L. Chapon, D. Ravot, and J.C. Tedenac, Nickel-Substituted Skutterudites: Synthesis, Structural and Electrical Properties, J. Alloys Compd., 1999, 282(1–2), p 58–63

    Article  CAS  Google Scholar 

  19. S. Choi, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, Thermoelectric Properties of Tl-Filled Co-free p-Type Skutterudites: Tlx(Fe,Ni)4Sb12, J. Appl. Phys., 2014, 115, p 023702 (1–5)

    Google Scholar 

  20. Q. Zhang, C. Chen, Y. Kang, X. Li, L. Zhang, D. Yu, Y. Tian, and B. Xu, Structural and Thermoelectric Characterizations of Samarium Filled CoSb3 Skutterudites, Mater. Lett., 2015, 143, p 41–43

    Article  CAS  Google Scholar 

  21. B. Bourgouin, D. Bérardan, E. Alleno, C. Godart, O. Rouleau, and E. Leroy, Preparation and Thermopower of New Mischmetal-Based Partially Filled Skutterudites MmyFe4−x(Co/Ni)xSb12, J. Alloys Compd., 2005, 399, p 47–51

    Article  Google Scholar 

  22. K. Matsuhira, M. Wakeshima, Y. Hinatsu, C. Sekine, I. Shirotani, D. Kikuchi, H. Sugawara, and H. Sato, Sm-Based Filled Skutterudite SmOs4Sb12 Studied by Specific Heat, J. Magn. Magn. Mater., 2007, 310(2), p 226–228

    Article  CAS  Google Scholar 

  23. K. Salzgeber, P. Prenninger, A. Grytsiv, P. Rogl, and E. Bauer, Skutterudites: Thermoelectric Materials for Automotive Applications?, J. Electron. Mater., 2010, 39(9), p 2074–2078

    Article  CAS  Google Scholar 

  24. C. Artini, C. Fanciulli, G. Zanicchi, G.A. Costa, and R. Carlini, Thermal Expansion and High Temperature Structural Features of the Filled Skutterudite Smβ(FeαNi1−α)4Sb12, Intermetallics, 2017, 87, p 31–37

    Article  CAS  Google Scholar 

  25. G. Rogl, L. Zhang, P. Rogl, A. Grytsiv, M. Falmbigl, D. Rajs, M. Kriegisch, H. Müller, E. Bauer, J. Koppensteiner, W. Schranz, M. Zehetbauer, Z. Henkie, and M.B. Maple, Thermal Expansion of Skutterudites, J. Appl. Phys., 2010, 107, p 043507

    Article  Google Scholar 

  26. G. Rogl, A. Grytsiv, E. Royanian, P. Heinrich, E. Bauer, P. Rogl, M. Zehetbauer, S. Puchegger, M. Reinecker, and W. Schranz, New p- and n-Type Skutterudites with ZT > 1 and Nearly Identical Thermal Expansion and Mechanical Properties, Acta Mater., 2013, 61, p 4066–4079

    Article  CAS  Google Scholar 

  27. G. Rogl, J. Bursik, A. Grytsiv, S. Puchegger, V. Soprunyuk, W. Schranz, X. Yan, E. Bauer, and P. Rogl, Nanostructuring as a Tool to Adjust Thermal Expansion in High ZT Skutterudites, Acta Mater., 2018, 145, p 359–368

    Article  CAS  Google Scholar 

  28. J. Eilertsen, M.A. Subramanian, and J.J. Kruzic, Fracture Toughness of Co4Sb12 and In0.1Co4Sb12 Thermoelectric Skutterudites Evaluated by Three Methods, J. Alloys Compd., 2013, 552, p 492–498

    Article  CAS  Google Scholar 

  29. C. Artini and R. Carlini, Influence of Composition and Thermal Treatments on Microhardness of the Filled Skutterudite Smy(FexNi1−x)4Sb12, J. Nanosci. Nanotechnol., 2017, 17(3), p 1634–1639

    Article  CAS  Google Scholar 

  30. Y. Tan, Experimental Methods Designed for Measuring Corrosion in Highly Resistive and Inhomogeneous Media, Corros. Sci., 2011, 53(4), p 1145–1155

    Article  CAS  Google Scholar 

  31. M.J. Nagy, The Effectiveness of Water Vapor Sealing Agents When Used in Application with Thermoelectric Cooling Modules, in Proceedings ICT’97, XVI International Conference on Thermoelectrics. https://doi.org/10.1109/ict.1997.667623.

  32. W. Brostow, T. Datashvili, H.E. Hagg Lobland, T. Hilbig, L. Su, C. Vinado, and J. White, Bismuth Telluride-Based Thermoelectric Materials: Coatings as Protection Against Thermal Cycling Effects, J. Mater. Res., 2012, 27(22), p 2930–2936

    Article  CAS  Google Scholar 

  33. D. Zhao, S. Bai, Q. Ma, M. Zuo, and X. Teng, Protective Properties of YSZ/Ti Film Deposited on CoSb3 Thermoelectric Material, Corros. Sci., 2015, 98, p 163–169

    Article  CAS  Google Scholar 

  34. R. Carlini, M.M. Carnasciali, F. Soggia, Y. Shen, and G. Zanicchi, ICP-AES and MicroRaman Corrosion Behaviour Investigation on Pb, Sb, Bi Tellurides in Sodium Chloride Solution, J. Alloys Compd., 2016, 654, p 593–598

    Article  CAS  Google Scholar 

  35. R. Carlini, M.M. Carnasciali, F. Soggia, S. Campodonico, and G. Zanicchi, ICP-AES and MicroRaman Corrosion Behaviour Investigation on Zn4Sb3 and Al, Ag Doped Phases in Sodium Chloride Solution, J. Alloys Compd., 2014, 588, p 361–365

    Article  CAS  Google Scholar 

  36. F. Rosalbino, R. Carlini, G. Zanicchi, and G. Scavino, Microstructural Characterization and Corrosion Behaviour Assessment of Tellurides for Thermoelectric Applications, J. Alloys Compd., 2013, 567, p 26–32

    Article  CAS  Google Scholar 

  37. V. Pacheco, R. Cardoso-Gil, L. Tepech-Carrillo, and Y. Grin, Corrosion Behavior of Thermoelectric Clathrates α- and β-Eu8Ga16−xGe30+x in Air, Corros. Sci., 2011, 53, p 2368–2373

    Article  CAS  Google Scholar 

  38. H. Kohri and T. Yagasaki, Corrosion Behavior of Bi2Te3-Based Thermoelectric Materials Fabricated by Melting Method, J. Electron. Mater., 2017, 46(5), p 2587–2592

    Article  CAS  Google Scholar 

  39. C. Artini, G. Zanicchi, G.A. Costa, M.M. Carnasciali, C. Fanciulli, and R. Carlini, Correlations Between Structural and Electronic Properties in the Filled Skutterudite Smy(FexNi1−x)4Sb12, Inorg. Chem., 2016, 55(5), p 2574–2583

    Article  CAS  Google Scholar 

  40. C. Artini, A. Castellero, M. Baricco, M.T. Buscaglia, and R. Carlini, Structure, Microstructure and Microhardness of Rapidly Solidified Smy(FexNi1−x)4Sb12 (x = 0.45, 0.50, 0.70, 1) Thermoelectric Compounds, Solid State Sci., 2018, 79, p 71–78

    Article  CAS  Google Scholar 

  41. R. Carlini, A.U. Khan, R. Ricciardi, T. Mori, and G. Zanicchi, Synthesis, Characterization and Thermoelectric Properties of Sm Filled Fe4−xNixSb12 Skutterudites, J. Alloys Compd., 2016, 655, p 321–326

    Article  CAS  Google Scholar 

  42. C. Artini, N. Parodi, G. Latronico, and R. Carlini, Formation and Decomposition Process of the Filled Skutterudite Smy(FexNi1−x)4Sb12 (0.40 ≤ x ≤ 1) as Revealed by Differential Thermal Analysis, J. Mater. Eng. Perform., 2018. https://doi.org/10.1007/s11665-018-3524-2

    Article  Google Scholar 

  43. R.C. Weast, Handbook of Chemistry and Physics, CRC Press, Cleveland, 1976

    Google Scholar 

  44. J. Rodriguez-Carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, Phys. B, 1993, 192(1-2), p 55–69

    Article  CAS  Google Scholar 

  45. K.W. Richter and H. Ipser, An Experimental Investigation of the Fe-Ni-Sb Ternary Phase Diagram, J. Phase Equilibria, 1997, 18(3), p 235–244

    Article  CAS  Google Scholar 

  46. P.J. Potts, A Handbook of Silicate Rock Analysis, Springer, Berlin, 1987

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Carlini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlini, R., Parodi, N., Soggia, F. et al. Corrosion Behavior of Smy(FexNi1−x)4Sb12 (0.40 ≤ x ≤ 0.80) in NaCl Solutions Studied by Electron Microscopy and ICP-AES. J. of Materi Eng and Perform 27, 6266–6273 (2018). https://doi.org/10.1007/s11665-018-3525-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3525-1

Keywords