Abstract
Filled skutterudites are currently studied as thermoelectric materials to be used in the automotive and nautical field; the study of their resistance to a saline environment is therefore mandatory. To this purpose, the corrosion behavior of several compositions belonging to the Smy(FexNi1−x)4Sb12 skutterudites system was investigated by immersing samples in differently concentrated (0.1 and 0.5 M) NaCl solutions. The effect of the treatment was analyzed both by SEM–EDS on the sample surface and at fixed times by ICP-AES on the solution. The formation of an oxide layer was observed on the surface of all the samples: the film results uniformly grown on specimens treated in NaCl at the lower concentration, while it is cracked and not spread over the whole surface in the other samples. Relying on the oxide layer thickness, the oxidation resistance results to increase with increasing the Fe content; correspondingly, the Sb concentration in the more diluted solution decreases at each time considered with increasing the Fe amount, pointing at a strict correlation between the cationic release and the oxide formation, and suggesting a possible mechanism for the growth of the protective film.
Similar content being viewed by others
References
J. Fu, X. Su, Y. Yan, W. Liu, Z. Zhang, X. She, C. Uher, and X. Tang, Thermoelectric Properties of Cu/Ag Doped Type-III, Ba24Ge100 Clathrates, J. Solid State Chem., 2017, 253, p 414–420
A. Tavassoli, F. Failamani, A. Grytsiv, G. Rogl, P. Heinrich, H. Müller, E. Bauer, M. Zehetbauer, and P. Rogl, On the Half-Heusler Compounds Nb1−x{Ti, Zr, Hf}xFeSb: Phase Relations, Thermoelectric Properties at Low and High Temperature, and Mechanical Properties, Acta Mater., 2017, 135, p 263–276
R. Carlini, C. Artini, G. Borzone, R. Masini, G. Zanicchi, and G.A. Costa, Synthesis and Characterization of the Compound CoSbS, J. Therm. Anal. Calorim., 2011, 103(1), p 23–27
R. Chmielowski, S. Bhattacharya, W. Xie, S. Jacob, K. Moriya, A. Weidenkaff, G.K.H. Madsen, and G. Dennler, High Thermoelectric Performance of Tellurium Doped Paracostibite, J. Mater. Chem. C, 2016, 4(15), p 3094–3100
R. Carlini, G. Zanicchi, G. Borzone, N. Parodi, and G.A. Costa, Synthesis and Characterization of the Intermetallic Compound NiSbS, J. Therm. Anal. Calorim., 2012, 108(2), p 793–797
R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Thermoelectric Properties of Co Substituted Synthetic Tetrahedrite, Acta Mater., 2015, 100, p 266–274
R. Carlini, D. Marré, I. Pallecchi, R. Ricciardi, and G. Zanicchi, Thermoelectric Properties of Zn4Sb3 Intermetallic Compound Doped with Aluminum and Silver, Intermetallics, 2014, 45, p 60–64
B.C. Sales, Filled Skutterudites, Handbook on the Physics and Chemistry of Rare Earths, Vol 33, K.A. Gschneidner, Jr., J.-C.G. Bünzli, and V.K. Pecharsky, Ed., North Holland, Amsterdam, 2003, p 1–34
C. Uher, Skutterudite-Based Thermoelectric, Thermoelectrics Handbook—Macro to Nano, D.M. Rowe, Ed., Taylor and Francis, New York, 2006, p 1–17
J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, New and Old Concepts in Thermoelectric Materials, Angew. Chem. Int. Ed., 2009, 48(46), p 8616–8639
G.J. Snyder and E.S. Toberer, Complex Thermoelectric Materials, Nat. Mater., 2008, 7, p 105–114
C. Uher, In Search of Efficient n-Type Skutterudite Thermoelectrics, in Proceedings of the XXI International Conference on Thermoelectrics (2002), pp. 35–41.
B. Khan, M. Yazdani-Kachoei, H.A. Rahanamaye Aliabad, I. Khan, S. Jalali-Asadabadi, and I. Ahmad, Effects of Chemical Potential on the Thermoelectric Performance of Alkaline-Earth Based Skutterudites (AFe4Sb12, A = Ca, Sr and Ba), J. Alloys Compd., 2017, 694, p 253–260
B. Bérardan, E. Alleno, C. Godart, O. Rouleau, and J. Rodriguez-Carvajal, Preparation and Chemical Properties of the Skutterudites (Ce-Yb)yFe4−x(Co/Ni)xSb12, Mater. Res. Bull., 2005, 40(3), p 537–551
A. Kaltzoglou, P. Vaqueiro, K.S. Knight, and A.V. Powell, Synthesis, Characterization and Physical Properties of the Skutterudites YbxFe2Ni2Sb12 (0 ≤ x ≤ 0.4), J. Solid State Chem., 2012, 193, p 36–41
T. Dahal, Q. Jie, W. Liu, K. Dahal, C. Guo, Y. Lan, and Z. Ren, Effect of Triple Fillers in Thermoelectric Performance of p-Type Skutterudites, J. Alloys Compd., 2015, 623, p 104–108
L. Zhang, N. Melnychenko-Koblyuk, E. Royanian, A. Grytsiv, P. Rogl, and E. Bauer, Influence of Filler Element and Ni-Substitution on Thermoelectric Properties of Multi-filled Skutterudites, J. Alloys Compd., 2010, 504, p 53–59
L. Chapon, D. Ravot, and J.C. Tedenac, Nickel-Substituted Skutterudites: Synthesis, Structural and Electrical Properties, J. Alloys Compd., 1999, 282(1–2), p 58–63
S. Choi, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, Thermoelectric Properties of Tl-Filled Co-free p-Type Skutterudites: Tlx(Fe,Ni)4Sb12, J. Appl. Phys., 2014, 115, p 023702 (1–5)
Q. Zhang, C. Chen, Y. Kang, X. Li, L. Zhang, D. Yu, Y. Tian, and B. Xu, Structural and Thermoelectric Characterizations of Samarium Filled CoSb3 Skutterudites, Mater. Lett., 2015, 143, p 41–43
B. Bourgouin, D. Bérardan, E. Alleno, C. Godart, O. Rouleau, and E. Leroy, Preparation and Thermopower of New Mischmetal-Based Partially Filled Skutterudites MmyFe4−x(Co/Ni)xSb12, J. Alloys Compd., 2005, 399, p 47–51
K. Matsuhira, M. Wakeshima, Y. Hinatsu, C. Sekine, I. Shirotani, D. Kikuchi, H. Sugawara, and H. Sato, Sm-Based Filled Skutterudite SmOs4Sb12 Studied by Specific Heat, J. Magn. Magn. Mater., 2007, 310(2), p 226–228
K. Salzgeber, P. Prenninger, A. Grytsiv, P. Rogl, and E. Bauer, Skutterudites: Thermoelectric Materials for Automotive Applications?, J. Electron. Mater., 2010, 39(9), p 2074–2078
C. Artini, C. Fanciulli, G. Zanicchi, G.A. Costa, and R. Carlini, Thermal Expansion and High Temperature Structural Features of the Filled Skutterudite Smβ(FeαNi1−α)4Sb12, Intermetallics, 2017, 87, p 31–37
G. Rogl, L. Zhang, P. Rogl, A. Grytsiv, M. Falmbigl, D. Rajs, M. Kriegisch, H. Müller, E. Bauer, J. Koppensteiner, W. Schranz, M. Zehetbauer, Z. Henkie, and M.B. Maple, Thermal Expansion of Skutterudites, J. Appl. Phys., 2010, 107, p 043507
G. Rogl, A. Grytsiv, E. Royanian, P. Heinrich, E. Bauer, P. Rogl, M. Zehetbauer, S. Puchegger, M. Reinecker, and W. Schranz, New p- and n-Type Skutterudites with ZT > 1 and Nearly Identical Thermal Expansion and Mechanical Properties, Acta Mater., 2013, 61, p 4066–4079
G. Rogl, J. Bursik, A. Grytsiv, S. Puchegger, V. Soprunyuk, W. Schranz, X. Yan, E. Bauer, and P. Rogl, Nanostructuring as a Tool to Adjust Thermal Expansion in High ZT Skutterudites, Acta Mater., 2018, 145, p 359–368
J. Eilertsen, M.A. Subramanian, and J.J. Kruzic, Fracture Toughness of Co4Sb12 and In0.1Co4Sb12 Thermoelectric Skutterudites Evaluated by Three Methods, J. Alloys Compd., 2013, 552, p 492–498
C. Artini and R. Carlini, Influence of Composition and Thermal Treatments on Microhardness of the Filled Skutterudite Smy(FexNi1−x)4Sb12, J. Nanosci. Nanotechnol., 2017, 17(3), p 1634–1639
Y. Tan, Experimental Methods Designed for Measuring Corrosion in Highly Resistive and Inhomogeneous Media, Corros. Sci., 2011, 53(4), p 1145–1155
M.J. Nagy, The Effectiveness of Water Vapor Sealing Agents When Used in Application with Thermoelectric Cooling Modules, in Proceedings ICT’97, XVI International Conference on Thermoelectrics. https://doi.org/10.1109/ict.1997.667623.
W. Brostow, T. Datashvili, H.E. Hagg Lobland, T. Hilbig, L. Su, C. Vinado, and J. White, Bismuth Telluride-Based Thermoelectric Materials: Coatings as Protection Against Thermal Cycling Effects, J. Mater. Res., 2012, 27(22), p 2930–2936
D. Zhao, S. Bai, Q. Ma, M. Zuo, and X. Teng, Protective Properties of YSZ/Ti Film Deposited on CoSb3 Thermoelectric Material, Corros. Sci., 2015, 98, p 163–169
R. Carlini, M.M. Carnasciali, F. Soggia, Y. Shen, and G. Zanicchi, ICP-AES and MicroRaman Corrosion Behaviour Investigation on Pb, Sb, Bi Tellurides in Sodium Chloride Solution, J. Alloys Compd., 2016, 654, p 593–598
R. Carlini, M.M. Carnasciali, F. Soggia, S. Campodonico, and G. Zanicchi, ICP-AES and MicroRaman Corrosion Behaviour Investigation on Zn4Sb3 and Al, Ag Doped Phases in Sodium Chloride Solution, J. Alloys Compd., 2014, 588, p 361–365
F. Rosalbino, R. Carlini, G. Zanicchi, and G. Scavino, Microstructural Characterization and Corrosion Behaviour Assessment of Tellurides for Thermoelectric Applications, J. Alloys Compd., 2013, 567, p 26–32
V. Pacheco, R. Cardoso-Gil, L. Tepech-Carrillo, and Y. Grin, Corrosion Behavior of Thermoelectric Clathrates α- and β-Eu8Ga16−xGe30+x in Air, Corros. Sci., 2011, 53, p 2368–2373
H. Kohri and T. Yagasaki, Corrosion Behavior of Bi2Te3-Based Thermoelectric Materials Fabricated by Melting Method, J. Electron. Mater., 2017, 46(5), p 2587–2592
C. Artini, G. Zanicchi, G.A. Costa, M.M. Carnasciali, C. Fanciulli, and R. Carlini, Correlations Between Structural and Electronic Properties in the Filled Skutterudite Smy(FexNi1−x)4Sb12, Inorg. Chem., 2016, 55(5), p 2574–2583
C. Artini, A. Castellero, M. Baricco, M.T. Buscaglia, and R. Carlini, Structure, Microstructure and Microhardness of Rapidly Solidified Smy(FexNi1−x)4Sb12 (x = 0.45, 0.50, 0.70, 1) Thermoelectric Compounds, Solid State Sci., 2018, 79, p 71–78
R. Carlini, A.U. Khan, R. Ricciardi, T. Mori, and G. Zanicchi, Synthesis, Characterization and Thermoelectric Properties of Sm Filled Fe4−xNixSb12 Skutterudites, J. Alloys Compd., 2016, 655, p 321–326
C. Artini, N. Parodi, G. Latronico, and R. Carlini, Formation and Decomposition Process of the Filled Skutterudite Smy(FexNi1−x)4Sb12 (0.40 ≤ x ≤ 1) as Revealed by Differential Thermal Analysis, J. Mater. Eng. Perform., 2018. https://doi.org/10.1007/s11665-018-3524-2
R.C. Weast, Handbook of Chemistry and Physics, CRC Press, Cleveland, 1976
J. Rodriguez-Carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, Phys. B, 1993, 192(1-2), p 55–69
K.W. Richter and H. Ipser, An Experimental Investigation of the Fe-Ni-Sb Ternary Phase Diagram, J. Phase Equilibria, 1997, 18(3), p 235–244
P.J. Potts, A Handbook of Silicate Rock Analysis, Springer, Berlin, 1987
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Carlini, R., Parodi, N., Soggia, F. et al. Corrosion Behavior of Smy(FexNi1−x)4Sb12 (0.40 ≤ x ≤ 0.80) in NaCl Solutions Studied by Electron Microscopy and ICP-AES. J. of Materi Eng and Perform 27, 6266–6273 (2018). https://doi.org/10.1007/s11665-018-3525-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11665-018-3525-1