Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Influence of Vanadium-Chromium Carbide on the Microstructure of Reinforced FeCrV15 Hardfacing during Laser Cladding Deposit

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The increasing manufacturing technologies are a crucial aspect of industrialization. Laser additive manufacturing is the process of manufacturing using laser (heat) technology to manufacture components from scratch and or strengthening and repairing components with the aid of functionally graded material to upgrade the properties of the components. The combination of Chromium-rich and Vanadium-rich Carbide reinforced iron-based hard facings have gotten progressively significant in enhancing the corrosion and wear resistance of tools subject to adverse abrasive and impact conditions. This study investigates the effect of vanadium-chromium carbide on the microstructure of the clad with respect to its laser processing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Aramide, S. Pityana, R. Sadiku, T. Jamiru and P. Popoola, Improving the Durability of Tillage Tools Through Surface Modification—A Review, Int. J. Adv. Manuf. Tech., 2021, 116(1), p 83–98.

    Google Scholar 

  2. B. P. Aramide, A. P. I. Popoola, E. R. Sadiku, F. O. Aramide, T. Jamiru and S. L. Pityana, Wear-resistant Metals and Composites. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. O. V. Kharissova, L. M. T. Martínez and B. I. Kharisov, Eds. Springer International Publishing, Cham, 2020.

  3. H. Baker and H. Okamoto, Alloy Phase Diagrams. ASM Handbook, ASM Intern., 1992, 3, p 501.

    Google Scholar 

  4. R. G. Bayer, Wear Analysis for Engineers. Ind. Lubr. Tribol., 2008, 60.

  5. S.D. Borle, I. Le Gall and P.F. Mendez, Primary Chromium Carbide Fraction Control with Variable Polarity SAW, Weld. J., 2015, 94, p 1–7.

    Google Scholar 

  6. B. Bouaifi, J. Bartzsch, A. Gebert, and H. Heinze, Untersuchungen zum plasmaauftragschweissen von verschleissfesten hartstoffschichten mit vanadiumcarbiden. Schweissen+ Schneiden, 1997.

  7. M. Dada, P. Popoola, N. Mathe, S. Pityana, S. Adeosun, O. Aramide and T. Lengopeng, Process Optimization of High Entropy Alloys by Laser Additive Manufacturing, Eng. Rep., 2020, 2, p e12252.

    CAS  Google Scholar 

  8. M. Filipovic, E. Romhanji, Z. Kamberovic and M. Korac, Matrix Microstructure and its Micro-analysis of Constituent Phases in As-cast Fe-Cr-CV Alloys, Mater. Trans., 2009, 50, p 2488–2492.

    Article  CAS  Google Scholar 

  9. K. Günther and J.P. Bergmann, Influencing Microstructure of Vanadium Carbide Reinforced FeCrVC Hardfacing during Gas Metal Arc Welding, Metals, 2020, 10, p 1345.

    Article  Google Scholar 

  10. J. Lampman and A. Peters, Ferroalloys and Other Additives to Liquid Iron and Steel, ASTM International, 1981.

  11. B.-J. Lee and D.N. Lee, A Thermodynamic Evaluation of the Fe-Cr-VC System, J. Phase Equil., 1992, 13, p 349–364.

    Article  CAS  Google Scholar 

  12. J. Leunda, C. Soriano, C. Sanz and V.G. Navas, Laser Cladding of Vanadium-carbide Tool Steels for Die Repair, Phys. Proc., 2011, 12, p 345–352.

    Article  CAS  Google Scholar 

  13. S.-F. Ma, J. Liang, J.-F. Zhao and B.-S. Xu, Synthesis, Characterization and Growth Mechanism of Flower-like Vanadium Carbide Hierarchical Nanocrystals, CrystEngComm, 2010, 12, p 750–754.

    Article  CAS  Google Scholar 

  14. R.L. Martins, D.D. Damm, R.M. Volu, R.A. Pinheiro, F.M. Rosa, V.J. Trava-Airoldi, G. De Vasconcelos, D.M. Barquete and E.J. Corat, Laser Cladding of Vanadium Carbide Interlayer for CVD Diamond Growth on Steel Substrate, Surf. Coat. Technol., 2021, 421, p 127387.

    Article  CAS  Google Scholar 

  15. E. Toyserkani, A. Khajepour and S.F. Corbin, Laser Cladding, CRC Press, USA, 2004.

    Book  Google Scholar 

  16. R. Vilar, Laser Cladding, J. Laser Appl., 1999, 11, p 64–79.

    Article  CAS  Google Scholar 

  17. S. Wei, J. Zhu and L. Xu, Research on Wear Resistance of High Speed Steel with High Vanadium Content, Mater. Sci. Eng. A, 2005, 404, p 138–145.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support from Tshwane University of Technology (TUT), Pretoria, South Africa, without which this work would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basiru Aramide.

Ethics declarations

Conflict of interest

The authors declare that there are no known contending monetary interests or individual connections that might have influenced this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aramide, B., Pityana, S., Jamiru, T. et al. Influence of Vanadium-Chromium Carbide on the Microstructure of Reinforced FeCrV15 Hardfacing during Laser Cladding Deposit. J. of Materi Eng and Perform 31, 514–523 (2022). https://doi.org/10.1007/s11665-021-06153-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06153-w

Keywords