Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Microstructural Refinement of Hot-Rolled Steels via Ferrite Dynamic Recovery and Recrystallization

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study tries to refine the microstructure of hot-rolled C-Mn steels via ferrite dynamic recovery or recrystallization. A total of 1.5 wt.% Al is added to C-Mn steel (1.5Al steel) to retain a certain amount of ferrite at high temperatures so that ferrite dynamic recovery or recrystallization occurs during the hot rolling process. 0.022 wt.% Nb and 0.018 wt.% Ti are further added (1.5Al-NbTi steel). The results show that ferrite dynamic recrystallization occurs entirely during the hot rolling process of the 1.5Al steel, but the microstructure is not refined. Ferrite dynamic recrystallization is suppressed by adding Nb and Ti elements, owing to the pinning effect of NbC and TiC precipitates. A dynamically recovered microstructure containing subgrains with a volume fraction of 29.7% is formed in the 1.5Al-NbTi steel, and the size of subgrains ranges from 1 to 4 μm. Some refined ferrite grains surrounded by high-angle grain boundaries of 2 to 5 μm also form due to ferrite dynamic recrystallization. Moreover, adding 1.5 wt.% Al reduces the yield strength from 291 ± 1 (C-Mn steel) to 246 ± 2 MPa. Furthermore, adding Nb and Ti improves the yield strength to 349 ± 3 MPa (1.5Al-NbTi steel). This work indicates that refining the microstructure of hot-rolled steels is feasible by ferrite dynamic recovery and dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Sampath, An Understanding of HSLA-65 Plate Steels, J. Mater. Eng. Perform., 2006, 15(1), p 32–40.

    Article  CAS  Google Scholar 

  2. Y.C. Liu, F.X. Zhu, Y.M. Li, and G.D. Wang, Effect of TMCP Parameters on the Microstructure and Properties of an Nb-Ti Microalloyed Steel, ISIJ Int., 2005, 45(6), p 851–857.

    Article  CAS  Google Scholar 

  3. K. Nishioka and K. Ichikawa, Progress in Thermomechanical Control of Steel Plates and their Commercialization, Sci. Technol. Adv. Mater., 2012, 13(2), p 023001.

    Article  Google Scholar 

  4. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained Bcc Steels, Mater. Sci. Eng. A, 2006, 441(1–2), p 1–17.

    Article  Google Scholar 

  5. A. Abdollah-Zadeh, and B. Eghbali, Mechanism of Ferrite Grain Refinement during Warm Deformation of a Low Carbon Nb-Microalloyed Steel, Mater. Sci. Eng. A, 2007, 457(1–2), p 219–225.

    Article  Google Scholar 

  6. A. Ohmori, S. Torizuka, K. Nagai, N. Koseki, and Y. Kogo, Effect of Deformation Temperature and Strain Rate on Evolution of Ultrafine Grained Structure through Single-pass Large-Strain Warm Deformation in a Low Carbon Steel, Mater. Trans., 2004, 45(7), p 2224–2231.

    Article  CAS  Google Scholar 

  7. J.J. Sun, H. Wang, B. Xu, L. Jiang, S.W. Guo, X.J. Sun, D.W. Yu, F. Liu, and Y.N. Liu, Making Low-Alloyed Steel Strong and Tough by Designing a Dual-phase Layered Structure, Acta Mater., 2022, 227, p 117701.

    Article  CAS  Google Scholar 

  8. W.J. Hui, C.W. Shao, Y.J. Zhang, X.L. Zhao, and Y.Q. Weng, Microstructure and Mechanical Properties of Medium Mn Steel Containing 3%Al Processed by Warm Rolling, Mater. Sci. Eng. A, 2017, 707, p 501–510.

    Article  CAS  Google Scholar 

  9. W.Q. Cao, M.D. Zhang, C.X. Huang, S.Y. Xiao, H. Dong, and Y.Q. Weng, Ultrahigh Charpy Impact Toughness (~450J) Achieved in High Strength Ferrite Martensite Laminated Steels, Sci. Rep., 2017, 7, p 41459.

    Article  CAS  Google Scholar 

  10. B.H. Sun, D. Palanisamy, D. Ponge, B. Gault, F. Fazeli, C. Scott, S. Yue, and D. Raabe, Revealing Fracture Mechanisms of Medium Manganese Steels With and Without Delta-ferrite, Acta Mater., 2019, 164, p 683–696.

    Article  CAS  Google Scholar 

  11. B. Garbarz, M. Adamczyk, and B.N. Harańczyk, Development of Structural Steel Containing 3÷5 wt.% Al with Microlaminated Microstructure, Arch. Metall. Mater., 2017, 62(4), p 2309–2315.

    Article  CAS  Google Scholar 

  12. S.F. Medina and C.A. Hernansez, General Expression of the Zener-Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44(1), p 137–148.

    Article  CAS  Google Scholar 

  13. B. Poorganji, G. Miyamoto, T. Maki, and T. Furuhara, Formation of Ultrafine Grained Ferrite by Warm Deformation of Lath Martensite in Low-alloy Steels with Different Carbon Content, Scripta Mater., 2008, 59(3), p 279–281.

    Article  CAS  Google Scholar 

  14. Z.K. Guo, and L.F. Li, Influences of Alloying Elements on Warm Deformation Behavior of High-Mn TRIP Steel with Martensitic Structure, Mater. Des., 2016, 89, p 665–675.

    Article  CAS  Google Scholar 

  15. T. Ungár, I. Dragomir, Á. Révész, and A. Borbély, The Contrast Factors of Dislocations in Cubic Crystals: The Dislocation Model of Strain Anisotropy in Practice, J. Appl. Cryst., 1999, 32(5), p 992–1002.

    Article  Google Scholar 

  16. F. HajyAkbary, J. Sietsma, A.J. Böttger, and M.J. Santofimia, An Improved x-ray Diffraction Analysis Method to Characterize Dislocation Density in Lath Martensitic Structures, Mater. Sci. Eng. A, 2015, 639, p 208–218.

    Article  CAS  Google Scholar 

  17. A.A. Gorni, Steel Forming and Heat Treating Handbook. Brazil (2013)

  18. V.M. Khlestov, E.V. Konopleva, and H.J. Mcqueen, Effects of Hot Deformation on Austenite Transformation in Low Carbon Mo-Nb and C-Mn Steels, Mater. Sci. Technol., 1998, 14(8), p 783–792.

    Article  CAS  Google Scholar 

  19. M.A. Davinci, D. Samantaray, U. Borah, S.K. Albert, and A.K. Bhaduri, Influence of Processing Parameters on Hot Workability and Microstructural Evolution in a Carbon-Manganese-Silicon Steel, Mater. Des., 2015, 88, p 567–576.

    Article  Google Scholar 

  20. C.N. Li, G. Yuan, F.Q. Ji, J. Kang, R.D.K. Misra, and G.D. Wang, Mechanism of Microstructural Control and Mechanical Properties in Hot Rolled Plain C-Mn Steel during Controlled Cooling, ISIJ Int., 2015, 55(8), p 1721–1729.

    Article  CAS  Google Scholar 

  21. B. Eghbali, Microstructural Development in a Low Carbon Ti-Microalloyed Steel During Deformation Within the Ferrite Region, Mater. Sci. Eng. A, 2008, 480(1–2), p 473–478.

    Google Scholar 

  22. Q. Li, T.S. Wang, T.F. Jing, Y.W. Gao, J.F. Zhou, J.K. Yu, and H.B. Li, Warm Deformation Behavior of Quenched Medium Carbon Steel and Its Effect on Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2009, 515(1–2), p 38–42.

    Article  Google Scholar 

  23. X.J. Shen, D.Z. Li, J. Chen, S. Tang, and G.D. Wang, Microstructure Evolution of Ferrite During Intercritical Deformation in Low Carbon Microalloyed Steels, Mater. Sci. Technol., 2020, 36(2), p 150–159.

    Article  CAS  Google Scholar 

  24. P.C. Liu, X.Y. Xu, Q.N. Liu, J.Z. Li, D. Liu, Z.P. Yan, M.Y. Sun, and X.M. Wang, Solid Solution and Precipitation Behavior of Nb in Al-Bearing Ferritic Steels, Chin. J. Eng., 2019, 41(7), p 882–888.

    CAS  Google Scholar 

  25. X.W. Lei, D.Y. Li, X.H. Zhang, and T.X. Liang, Effect of Solid Solution Elements on Solubility Products of Carbides and Nitrides in Ferrite: Thermodynamic Calculations, Metall. Mater. Trans. A, 2019, 50A(6), p 2978–2990.

    Article  Google Scholar 

  26. Y.F. Mi, J.C. Cao, Z.Y. Zhang, H.Q. Qi, X.L. Zhou, and Y.Q. Long, 碳含量对钢中碳化铌在奥氏体中固溶度积的影响 (Effect of Carbon Content on the Solubility of Niobium in Austenite), Iron Steel, 2012, 47(3), p 84–88. ((in Chinese))

    CAS  Google Scholar 

  27. X.W. Lei, D.Y. Li, X.H. Zhang, and T.X. Liang, Effect of Solid Solution Elements on Solubility Products of Carbides and Nitrides in Austenite: Thermodynamic Calculations, Metall. Mater. Trans. A, 2019, 50A(9), p 4445–4461.

    Article  Google Scholar 

  28. Y.N. Liu, X.K. Liang, and Y. She, The Effect of Nb on Recrystallization Behavior of a Nb Micro-Alloyed Steel, Mater. Sci. Eng. A, 2008, 474(1–2), p 254–260.

    Article  Google Scholar 

  29. A.G. Kostryzhev, A.A. Shahrani, C. Zhu, S.P. Ringer, and E.V. Pereloma, Effect of Deformation Temperature on Niobium Clustering, Precipitation and Austenite Recrystallisation in a Nb-Ti Microalloyed Steel, Mater. Sci. Eng. A, 2013, 581, p 16–25.

    Article  CAS  Google Scholar 

  30. W.F. Huo, R.B. Song, Z.R. Zhang, Y.J. Wang, N.P. Zhou, S. Zhao, Y. Zhang, and J.L. Sun, Effect of Nb Contents on Microstructure Characteristics and Yielding Behavior of Fe-4Mn-2Al-0.2C Steel, Mater. Sci. Eng. A, 2021, 819, p 141457.

    Article  CAS  Google Scholar 

  31. L.F. Li, W.Y. Yang, and Z.P. Sun, Dynamic Recrystallization of Ferrite in a Low Carbon Nb-Microalloyed Steel, Mater. Sci. Forum, 2005, 457–479, p 149–152.

    Article  Google Scholar 

  32. G. Larzabal, N. Isasti, J.M.R. Ibabe, and P. Uranga, Evaluating Strengthening and Impact Toughness Mechanisms for Ferritic and Bainitic Microstructures in Nb, Nb-Mo and Ti-Mo Microalloyed Steels, Metals, 2017, 7(2), p 65.

    Article  Google Scholar 

  33. B. Mintz, W.D. Gunawardana, and H. Su, Al as Solid Solution Hardener in Steels, Mater. Sci. Technol., 2008, 24(5), p 596–600.

    Article  CAS  Google Scholar 

  34. F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publisher, London, 1978.

    Google Scholar 

  35. H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang, Interphase Precipitation of Nanometer-Sized Carbides in a Titanium–Molybdenum-bearing Low-Carbon Steel, Acta Mater., 2011, 59(16), p 6264–6274.

    Article  CAS  Google Scholar 

  36. J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, and G.D. Wang, Influence of Cooling Paths on Microstructural Characteristics and Precipitation Behaviors in a Low Carbon V-Ti Microalloyed Steel, Mater. Sci. Eng. A, 2014, 594, p 389–393.

    Article  CAS  Google Scholar 

  37. N. Isasti, D.J. Badiola, M.L. Taheri, and P. Uranga, Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part I: Yield Strength, Metall. Mater. Trans. A, 2014, 45A(11), p 4960–4971.

    Article  Google Scholar 

  38. L.C. Chang and H.K.D.H. Bhadeshia, Austenite Films in Bainitic Microstructures, Mater. Sci. Technol., 1995, 11(9), p 874–881.

    Article  CAS  Google Scholar 

  39. H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, and K.S. Kumar, Deformation Response of Ferrite and Martensite in a Dual-phase Steel, Acta Mater., 2014, 62, p 197–211.

    Article  CAS  Google Scholar 

  40. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, An Overview of Dual-phase Steels: Advances in Microstructure-oriented Processing and Micromechanically Guided Design, Ann. Rev. Mater. Res., 2015, 45, p 391–431.

    Article  CAS  Google Scholar 

  41. C.N. Li, G. Yuan, F.Q. Ji, D.S. Ren, and G.D. Wang, Effects of Auto-Tempering on Microstructure and Mechanical Properties in Hot Rolled Plain C-Mn Dual Phase Steels, Mater. Sci. Eng. A, 2016, 665, p 98–107.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51904072 and 51905189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjun Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Wang, B., Chen, L. et al. Microstructural Refinement of Hot-Rolled Steels via Ferrite Dynamic Recovery and Recrystallization. J. of Materi Eng and Perform 32, 10898–10909 (2023). https://doi.org/10.1007/s11665-023-07895-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07895-5

Keywords