Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Factors Affecting the Ductility of Cold-Sprayed Copper Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In order to provide a basis for future optimization and control of the cold spray process, we experimentally studied the impact of various factors on the ductility (% elongation) of copper coatings. For the current application, cold-sprayed copper is employed as a corrosion barrier on carbon steel, while in addition to this, sufficient ductility is required for mechanical integrity. Results show that the cold-sprayed copper coating ductility increases with annealing temperature. A corresponding linear relationship is also derived with ductility and hardness. The current investigation further shows that there can be significant variability in ductility when the feedstock powder characteristics (e.g., chemical composition) are changed while keeping the spray and heat treatment conditions constant. Configuration/substrate dimensions are also considered as factors affecting the ductility of the copper during the cold spray process. The main findings that were observed include: (1) an increase in ductility from ~ 9 to ~ 29% when heat treating the samples from 320 to 600 °C; (2) a variation in ductility from ~ 8 to ~ 39% upon changing powder characteristics; and (3) a decrease in ductility from ~ 27 to ~ 15%, upon increasing the size of the substrate and by changing its geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.C. McCune, W.T. Donlon, O.O. Popoola, and E.L. Cartwright, Characterization of Copper Layers Produced by Cold Gas-Dynamic Spraying, J. Therm. Spray Technol., 2000, 9(1), p 73-82

    Article  CAS  Google Scholar 

  2. E. Calla, D. McCartney, and P. Shipway, Effect of Deposition Conditions on the Properties and Annealing Behavior of Cold-Sprayed Copper, J. Therm. Spray Technol., 2006, 15(2), p 255-262

    Article  CAS  Google Scholar 

  3. C.H. Boyle and S.A. Meguid, Mechanical Performance of Integrally Bonded Copper Coatings for the Long Term Disposal of Used Nuclear Fuel, Nucl. Eng. Des., 2015, 293, p 403-412

    Article  CAS  Google Scholar 

  4. F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, and M. Kocak, Mechanical Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(24), p 6770-6782

    Article  Google Scholar 

  5. R. Huang, M. Sone, W. Ma, and H. Fukanuma, The Effects of Heat Treatment on the Mechanical Properties of Cold-Sprayed Coatings, Surf. Coat. Technol., 2015, 261, p 278-288

    Article  CAS  Google Scholar 

  6. B. Yu, J. Tam, W. Li, H. Cho, J.-G. Legoux, D. Poirier, J. Giallonardo, and U. Erb, Microstructural and Bulk Properties Evolution of Cold-Sprayed Copper Coatings After Low Temperature Annealing, Materialia, 2019, 7, p 100356

    Article  Google Scholar 

  7. S. Yin, J. Cizek, X. Yan, and R. Lupoi, Annealing Strategies for Enhancing Mechanical Properties of Additively Manufactured 316L Stainless Steel Deposited by Cold Spray, Surf. Coat. Technol., 2019, 370, p 353-361

    Article  CAS  Google Scholar 

  8. A.-M. Bandar, P. Vo, R. Mongrain, E. Irissou, and S. Yue, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications, J. Therm. Spray Technol., 2014, 23(4), p 641-652

    Article  Google Scholar 

  9. P. Coddet, C. Verdy, C. Coddet, F. Debray, and F. Lecouturier, Mechanical Properties of Thick 304L Stainless Steel Deposits Processed by He Cold Spray, Surf. Coat. Technol., 2015, 277, p 74-80

    Article  CAS  Google Scholar 

  10. J. Murray, M. Zuccoli, and T. Hussain, Heat Treatment of Cold-Sprayed C355 Al for Repair: Microstructure and Mechanical Properties, J. Therm. Spray Technol., 2018, 27(1-2), p 159-168

    Article  CAS  Google Scholar 

  11. M. Rokni, C. Widener, V. Champagne, G. Crawford, and S. Nutt, The Effects of Heat Treatment on 7075 Al Cold Spray Deposits, Surf. Coat. Technol., 2017, 310, p 278-285

    Article  CAS  Google Scholar 

  12. M. Rokni, C. Widener, O. Ozdemir, and G. Crawford, Microstructure and Mechanical Properties of Cold Sprayed 6061 Al in As-Sprayed and Heat Treated Condition, Surf. Coat. Technol., 2017, 309, p 641-650

    Article  CAS  Google Scholar 

  13. A.C. Hall, D. Cook, R. Neiser, T. Roemer, and D. Hirschfeld, The Effect of a Simple Annealing Heat Treatment on the Mechanical Properties of Cold-Sprayed Aluminum, J. Therm. Spray Technol., 2006, 15(2), p 233-238

    Article  CAS  Google Scholar 

  14. X. Qiu, J.-Q. Wang, L. Gyansah, J.-X. Zhang, and T.-Y. Xiong, Effect of Heat Treatment on Microstructure and Mechanical Properties of A380 Aluminum Alloy Deposited by Cold Spray, J. Therm. Spray Technol., 2017, 26(8), p 1898-1907

    Article  CAS  Google Scholar 

  15. W. Wong, E. Irissou, P. Vo, M. Sone, F. Bernier, J.-G. Legoux, H. Fukanuma, and S. Yue, Cold Spray Forming of Inconel 718, J. Therm. Spray Technol., 2013, 22(2-3), p 413-421

    Article  CAS  Google Scholar 

  16. D. Poirier, J.-G. Legoux, P. Vo, B. Blais, J.D. Giallonardo, and P.G. Keech, Powder Development and Qualification for High-Performance Cold Spray Copper Coatings on Steel Substrates, J. Therm. Spray Technol., 2019, 28(3), p 444-459

    Article  CAS  Google Scholar 

  17. Y.-J. Li, X.-T. Luo, and C.-J. Li, Dependency of Deposition Behavior, Microstructure and Properties of Cold Sprayed Cu on Morphology and Porosity of the Powder, Surf. Coat. Technol., 2017, 328, p 304-312

    Article  CAS  Google Scholar 

  18. S. Yin, X. Wang, X. Suo, H. Liao, Z. Guo, W. Li, and C. Coddet, Deposition Behavior of Thermally Softened Copper Particles in Cold Spraying, Acta Mater., 2013, 61(14), p 5105-5118

    Article  CAS  Google Scholar 

  19. Z. Arabgol, M.V. Vidaller, H. Assadi, F. Gärtner, and T. Klassen, Influence of Thermal Properties and Temperature of Substrate on the Quality of Cold-Sprayed Deposits, Acta Mater., 2017, 127, p 287-301

    Article  CAS  Google Scholar 

  20. J.D. Giallonardo, P.G. Keech, D. Doyle, Application of copper coatings to used nuclear fuel containers, in 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come—Driving Toward Long-Term Storage and Disposal 2017, pp. 173-182

  21. H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382-407

    Article  CAS  Google Scholar 

  22. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550

    Article  CAS  Google Scholar 

  23. P. Jakupi, P.G. Keech, I. Barker, S. Ramamurthy, R.L. Jacklin, D.W. Shoesmith, and D.E. Moser, Characterization of Commercially Cold Sprayed Copper Coatings and Determination of the Effects of Impacting Copper Powder Velocities, J. Nucl. Mater., 2015, 466, p 1-11

    Article  CAS  Google Scholar 

  24. S. Rahmati, A. Zúñiga, B. Jodoin, and R.G.A. Veiga, Deformation of Copper Particles Upon Impact: A Molecular Dynamics Study of Cold Spray, Comput. Mater. Sci., 2020, 171, p 109219

    Article  CAS  Google Scholar 

  25. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    CAS  Google Scholar 

  26. M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson, and C.A. Schuh, Adiabatic Shear Instability is not Necessary for Adhesion in Cold Spray, Acta Mater., 2018, 158, p 430-439

    Article  CAS  Google Scholar 

  27. D. Guskovlć, D. Marković, and S. Nestorovlć, Effect of Deformation and Oxygen Content on Mechanical Properties of Different Copper Wires, Bull. Mater. Sci., 1997, 20(5), p 693-697

    Article  Google Scholar 

  28. T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(16-17), p 4947-4960

    Article  CAS  Google Scholar 

  29. M. Zeren, Effect of Copper and Silicon Content on Mechanical Properties in Al–Cu–Si–Mg Alloys, J. Mater. Process. Technol., 2005, 169(2), p 292-298

    Article  CAS  Google Scholar 

  30. F.-Y. Hung, T.-S. Lui, L.-H. Chen, and Y.-T. Wang, Recrystallization and Fracture Characteristics of Thin Copper Wire, J. Mater. Sci., 2007, 42(14), p 5476-5482

    Article  CAS  Google Scholar 

  31. W.-Y. Li, C.-J. Li, and H. Liao, Significant Influence of Particle Surface Oxidation on Deposition Efficiency, Interface Microstructure and Adhesive Strength of Cold-Sprayed Copper Coatings, Appl. Surf. Sci., 2010, 256(16), p 4953-4958

    Article  CAS  Google Scholar 

  32. Y. Ichikawa, R. Tokoro, M. Tanno, and K. Ogawa, Elucidation of Cold-Spray Deposition Mechanism by Auger Electron Spectroscopic Evaluation of Bonding Interface Oxide Film, Acta Mater., 2019, 164, p 39-49

    Article  CAS  Google Scholar 

  33. C.J. Li, H.T. Wang, Q. Zhang, G.J. Yang, W.Y. Li, and H.L. Liao, Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying, J. Therm. Spray Technol., 2009, 19(1-2), p 95-101

    Article  Google Scholar 

  34. Y. Li, Y. Wei, X. Luo, C. Li, and N. Ma, Correlating Particle Impact Condition with Microstructure and Properties of the Cold-Sprayed Metallic Deposits, J. Mater. Sci. Technol., 2020, 40, p 185-195

    Article  Google Scholar 

  35. Y. Wang, X. Chen, S. Konovalov, C. Su, A.N. Siddiquee, and N. Gangil, In-Situ Wire-Feed Additive Manufacturing of Cu-Al Alloy by Addition of Silicon, Appl. Surf. Sci., 2019, 487, p 1366-1375

    Article  CAS  Google Scholar 

  36. O.C. Ozdemir, Q. Chen, S. Muftu, and V.K. Champagne, Modeling the Continuous Heat Generation in the Cold Spray Coating Process, J. Therm. Spray Technol., 2019, 28(1), p 108-123

    Article  CAS  Google Scholar 

  37. M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Sugimoto, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16(5-6), p 643-650

    Article  CAS  Google Scholar 

  38. S. Yin, X. Suo, Z. Guo, H. Liao, and X. Wang, Deposition Features of Cold Sprayed Copper Particles on Preheated Substrate, Surf. Coat. Technol., 2015, 268, p 252-256

    Article  CAS  Google Scholar 

  39. J.-G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 619-626

    Article  CAS  Google Scholar 

  40. M. Yu, W.-Y. Li, F. Wang, X. Suo, and H. Liao, Effect of Particle and Substrate Preheating on Particle Deformation Behavior in Cold Spraying, Surf. Coat. Technol., 2013, 220, p 174-178

    Article  CAS  Google Scholar 

  41. W.-Y. Li, C.-J. Li, and H. Liao, Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating, J. Therm. Spray Technol., 2006, 15(2), p 206-211

    Article  CAS  Google Scholar 

  42. M. Bray, A. Cockburn, and W. O’Neill, The Laser-Assisted Cold Spray Process and Deposit Characterisation, Surf. Coat. Technol., 2009, 203(19), p 2851-2857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the work of the technical officers’ team in Boucherville: J.-F. Alarie, C. Hoang, D. de Lagrave, M. Zeman and K. Théberge. The authors would like also to acknowledge S. St-Laurent and E. Pelletier from 5NPlus for the ICP analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Guerreiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 2019 International Thermal Spray Conference, held May 26–29, 2019 in Yokohama, Japan, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerreiro, B., Vo, P., Poirier, D. et al. Factors Affecting the Ductility of Cold-Sprayed Copper Coatings. J Therm Spray Tech 29, 630–641 (2020). https://doi.org/10.1007/s11666-020-00993-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-00993-z

Keywords