Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Advances in tissue state recognition in spinal surgery: a review

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Spinal disease is an important cause of cervical discomfort, low back pain, radiating pain in the limbs, and neurogenic intermittent claudication, and its incidence is increasing annually. From the etiological viewpoint, these symptoms are directly caused by the compression of the spinal cord, nerve roots, and blood vessels and are most effectively treated with surgery. Spinal surgeries are primarily performed using two different techniques: spinal canal decompression and internal fixation. In the past, tactile sensation was the primary method used by surgeons to understand the state of the tissue within the operating area. However, this method has several disadvantages because of its subjectivity. Therefore, it has become the focus of spinal surgery research so as to strengthen the objectivity of tissue state recognition, improve the accuracy of safe area location, and avoid surgical injury to tissues. Aside from traditional imaging methods, surgical sensing techniques based on force, bioelectrical impedance, and other methods have been gradually developed and tested in the clinical setting. This article reviews the progress of different tissue state recognition methods in spinal surgery and summarizes their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truumees E. A history of lumbar disc herniation from Hippocrates to the 1990s. Clin Orthop Relat Res 2015; 473(6): 1885–1895

    Article  PubMed  Google Scholar 

  2. Issack PS, Cunningham ME, Pumberger M, Hughes AP, Cammisa FP Jr. Degenerative lumbar spinal stenosis: evaluation and management. J Am Acad Orthop Surg 2012; 20(8): 527–535

    Article  PubMed  Google Scholar 

  3. Lurie J, Tomkins-Lane C. Management of lumbar spinal stenosis. BMJ 2016; 352: h6234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Koreckij TD, Fischgrund JS. Degenerative spondylolisthesis. J Spinal Disord Tech 2015; 28(7): 236–241

    Article  PubMed  Google Scholar 

  5. Melancia JL, Francisco AF, Antunes JL. Spinal stenosis. Handb Clin Neurol 2014; 119(119): 541–549

    Article  PubMed  Google Scholar 

  6. Overley SC, Kim JS, Gogel BA, Merrill RK, Hecht AC. Tandem spinal stenosis: a systematic review. JBJS Rev 2017; 5(9): e2

    Article  PubMed  Google Scholar 

  7. Lee JH, Choi KH, Kang S, Kim DH, Kim DH, Kim BR, Kim W, Kim JH, Do KH, Do JG, Ryu JS, Min K, Bahk SG, Park YH, Bang HJ, Shin KH, Yang S, Yang HS, Yoo SD, Yoo JS, Yoon KJ, Yoon SJ, Lee GJ, Lee SY, Lee SC, Lee SY, Lee IS, Lee JS, Lee CH, Lim JY, Han JY, Han SH, Sung DH, Cho KH, Kim SY, Kim HJ, Ju W. Nonsurgical treatments for patients with radicular pain from lumbosacral disc herniation. Spine J 2019; 19(9): 1478–1489

    Article  PubMed  Google Scholar 

  8. Viezens L, Reer P, Strahl A, Weiser L, Schroeder M, Beyerlein J, Schaefer C. Safety and efficacy of single-stage versus 2-stage spinal fusion via posterior instrumentation and anterior thoracoscopy: a retrospective matched-pair cohort study with 247 consecutive patients. World Neurosurg 2018; 109: e739–e747

    Article  PubMed  Google Scholar 

  9. Fjeld OR, Grøvle L, Helgeland J, Småstuen MC, Solberg TK, Zwart JA, Grotle M. Complications, reoperations, readmissions, and length of hospital stay in 34 639 surgical cases of lumbar disc herniation. Bone Joint J 2019; 101-B(4): 470–477

    Article  CAS  PubMed  Google Scholar 

  10. Inose H, Kato T, Yuasa M, Yamada T, Maehara H, Hirai T, Yoshii T, Kawabata S, Okawa A. Comparison of decompression, decompression plus fusion, and decompression plus stabilization for degenerative spondylolisthesis: a prospective, randomized study. Clin Spine Surg 2018; 31(7): E347–E352

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen Z, Wu B, Zhai X, Bai Y, Zhu X, Luo B, Chen X, Li C, Yang M, Xu K, Liu C, Wang C, Zhao Y, Wei X, Chen K, Yang W, Ta D, Li M. Basic study for ultrasound-based navigation for pedicle screw insertion using transmission and backscattered methods. PLoS One 2015; 10(4): e0122392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fujishiro T, Nakaya Y, Fukumoto S, Adachi S, Nakano A, Fujiwara K, Baba I, Neo M. Accuracy of pedicle screw placement with robotic guidance system: a cadaveric study. Spine 2015; 40(24): 1882–1889

    Article  PubMed  Google Scholar 

  13. Galluzzo M, D’Adamio S, Pastorino R, Andreoli A, Servoli S, Bianchi L, Talamonti M. Effect of anti IL-12/23 on body composition: results of bioelectrical impedance analysis in Caucasian psoriatic patients. Expert Opin Biol Ther 2018; 18(3): 229–235

    Article  CAS  PubMed  Google Scholar 

  14. Wei S, Tao W, Zhu H, Li Y. Three-dimensional intraoperative imaging with O-arm to establish a working trajectory in percutaneous endoscopic lumbar discectomy. Wideochir Inne Tech Maloinwazyjne 2016; 10(4): 555–560

    PubMed  Google Scholar 

  15. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine 2007; 32(3): E111–E120

    Article  PubMed  Google Scholar 

  16. Holly LT, Foley KT. Percutaneous placement of posterior cervical screws using three-dimensional fluoroscopy. Spine 2006; 31(5): 536–541

    Article  PubMed  Google Scholar 

  17. Hirayama J, Hashimoto M. Percutaneous endoscopic diskectomy using an interlaminar approach based on 3D CT/MR fusion imaging. J Neurol Surg A Cent Eur Neurosurg 2019; 80(2): 88–95

    Article  PubMed  Google Scholar 

  18. Hu Z, Li X, Cui J, He X, Li C, Han Y, Pan J, Yang M, Tan J, Li L. Significance of preoperative planning software for puncture and channel establishment in percutaneous endoscopic lumbar DISCECTOMY: a study of 40 cases. Int J Surg 2017; 41: 97–103

    Article  PubMed  Google Scholar 

  19. Tang J, Zhu Z, Sui T, Kong D, Cao X. Position and complications of pedicle screw insertion with or without image-navigation techniques in the thoracolumbar spine: a meta-analysis of comparative studies. J Biomed Res 2014; 28(3): 228–239

    PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Wang F, Han S, Wang Y, Dong J, Li L, Zhou D. Isocentric C-arm three-dimensional navigation versus conventional C-arm assisted C1–C2 transarticular screw fixation for atlantoaxial instability. Arch Orthop Trauma Surg 2015; 135(8): 1083–1092

    Article  PubMed  Google Scholar 

  21. Bledsoe JM, Fenton D, Fogelson JL, Nottmeier EW. Accuracy of upper thoracic pedicle screw placement using three-dimensional image guidance. Spine J 2009; 9(10): 817–821

    Article  PubMed  Google Scholar 

  22. Oertel MF, Hobart J, Stein M, Schreiber V, Scharbrodt W. Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine 2011; 14(4): 532–536

    Article  PubMed  Google Scholar 

  23. Sun Z, Yuan D, Sun Y, Zhang Z, Wang G, Guo Y, Wang G, Liu D, Chen P, Jing L, Yang F, Zhang P, Zhang H, Wu Y, Shi W, Wang J. Application of intraoperative O-arm-assisted real-time navigation technique for spinal fixation. Translational Neuroence & Clinics 2017; 3(3): 135–146

    Article  Google Scholar 

  24. Bernhardt S, Nicolau SA, Agnus V, Soler L, Doignon C, Marescaux J. Automatic localization of endoscope in intraoperative CT image: a simple approach to augmented reality guidance in laparoscopic surgery. Med Image Anal 2016; 30: 130–143

    Article  PubMed  Google Scholar 

  25. Zheng C, Li J, Zeng G, Ye W, Sun J, Hong J, Li C. Development of a virtual reality preoperative planning system for postlateral endoscopic lumbar discectomy surgery and its clinical application. World Neurosurg 2019; 123: e1–e8

    Article  PubMed  Google Scholar 

  26. Draelos M, Keller B, Viehland C, Carrasco-Zevallos OM, Kuo A, Izatt J. Real-time visualization and interaction with static and live optical coherence tomography volumes in immersive virtual reality. Biomed Opt Express 2018; 9(6): 2825–2843

    Article  PubMed  PubMed Central  Google Scholar 

  27. Javaux A, Bouget D, Gruijthuijsen C, Stoyanov D, Vercauteren T, Ourselin S, Deprest J, Denis K, Vander Poorten E. A mixed-reality surgical trainer with comprehensive sensing for fetal laser minimally invasive surgery. Int J CARS 2018; 13(12): 1949–1957

    Article  Google Scholar 

  28. Coelho G, Defino HLA. The role of mixed reality simulation for surgical training in spine: phase 1 validation. Spine 2018; 43(22): 1609–1616

    Article  PubMed  Google Scholar 

  29. Yu H, Zhou Z, Lei X, Liu H, Fan G, He S. Mixed reality-based preoperative planning for training of percutaneous transforaminal endoscopic discectomy: a feasibility study. World Neurosurg 2019; 129: e767–e775

    Article  PubMed  Google Scholar 

  30. Lee WY, Shih CL. Control and breakthrough detection of a three-axis robotic bone drilling system. Mechatronics 2006; 16(2): 73–84

    Article  CAS  Google Scholar 

  31. Aziz MH, Ayub MA, Jaafar R. Real-time algorithm for detection of breakthrough bone drilling. Procedia Eng 2012; 41: 352–359

    Article  Google Scholar 

  32. Hu Y, Jin H, Zhang L, Zhang P, Zhang J. State recognition of pedicle drilling with force sensing in a robotic spinal surgical system. IEEE/ASME Trans Mechatron 2014; 19(1): 357–365

    Article  Google Scholar 

  33. Marco M, Rodríguez-Millán M, Santiuste C, Giner E, Henar Miguélez M. A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater 2015; 44: 179–201

    Article  PubMed  Google Scholar 

  34. Ortmaier T, Weiss H, Döbele S, Schreiber U. Experiments on robotassisted navigated drilling and milling of bones for pedicle screw placement. Int J Med Robot 2006; 2(4): 350–363

    Article  CAS  PubMed  Google Scholar 

  35. Kim WY, Ko SY, Park JO, Park S. 6-DOF force feedback control of robot-assisted bone fracture reduction system using double F/T sensors and adjustable admittances to protect bones against damage. Mechatronics 2016; 35: 136–147

    Article  Google Scholar 

  36. Deng Z, Jin H, Hu Y, He Y, Zhang P, Tian W, Zhang J. Fuzzy force control and state detection in vertebral lamina milling. Mechatronics 2016; 35: 1–10

    Article  CAS  Google Scholar 

  37. Fan L, Gao P, Zhao B, Sun Y, Xin X, Hu Y, Liu S, Zhang J. Safety control strategy for vertebral lamina milling task. CAAI Trans Intell Technol 2016; 1(3): 249–258

    Article  Google Scholar 

  38. Jiang Z, Qi X, Sun Y, Hu Y, Guillaume Z, Zhang J. Cutting depth monitoring based on milling force for robot-assisted laminectomy. IEEE Trans Autom Sci Eng 2020; 17(1): 2–14

    Article  Google Scholar 

  39. Kasahara Y, Ohnishi K, Kawana H. Analysis of drill wear based on torque and force sensorless cutting power estimation. IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society. IEEE, 2010

  40. Osa T, Abawi CF, Sugita N, Chikuda H, Sugita S, Tanaka T, Oshima H, Moro T, Tanaka S, Mitsuishi M. Hand-held bone cutting tool with autonomous penetration detection for spinal surgery. IEEE/ASME Trans Mechatron 2015; 20(6): 3018–3027

    Article  Google Scholar 

  41. Dai Y, Xue Y, Zhang J. Vibration-based milling condition monitoring in robot-assisted spine surgery. IEEE/ASME Trans Mechatron 2015; 20(6): 3028–3039

    Article  Google Scholar 

  42. Dai Y, Xue Y, Zhang J. A continuous wavelet transform approach for harmonic parameters estimation in the presence of impulsive noise. J Sound Vibrat 2016; 360: 300–314

    Article  Google Scholar 

  43. Faes TJ, van der Meij HA, de Munck JC, Heethaar RM. The electric resistivity of human tissues (100 Hz–10 MHz): a meta-analysis of review studies. Physiol Meas 1999; 20(4): R1–R10

    Article  CAS  PubMed  Google Scholar 

  44. Nakase H, Matsuda R, Shin Y, Park YS, Sakaki T. The use of ultrasonic bone curettes in spinal surgery. Acta Neurochir (Wien) 2006; 148(2): 207–213

    Article  CAS  Google Scholar 

  45. Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 1996; 41(11): 2231–2249

    Article  CAS  PubMed  Google Scholar 

  46. Dean DA, Ramanathan T, Machado D, Sundararajan R. Electrical impedance spectroscopy study of biological tissues. J Electrost 2008; 66(3–4): 165–177

    Article  CAS  Google Scholar 

  47. Antakia R, Brown BH, Highfield PE, Stephenson TJ, Brown NJ, Balasubramanian SP. Electrical impedance spectroscopy to aid parathyroid identification and preservation in central compartment neck surgery: a proof of concept in a rabbit model. Surg Innov 2016; 23(2): 176–182

    Article  PubMed  Google Scholar 

  48. Dai Y, Xue Y, Zhang J. Drilling electrode for real-time measurement of electrical impedance in bone tissues. Ann Biomed Eng 2014; 42(3): 579–588

    Article  PubMed  Google Scholar 

  49. Shao F, Bai H, Tang M, Xue Y, Dai Y, Zhang J. Tissue discrimination by bioelectrical impedance during PLL resection in anterior decompression surgery for treatment of cervical spondylotic myelopathy. J Orthop Surg Res 2019; 14(1): 341

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wyss Balmer T, Ansó J, Muntane E, Gavaghan K, Weber S, Stahel A, Büchler P. In-vivo electrical impedance measurement in mastoid bone. Ann Biomed Eng 2017; 45(4): 1122–1132

    Article  PubMed  Google Scholar 

  51. Turan Y, Sayin M, Yurt A, Yilmaz T, Ozer FD, Temiz C. Local tissue electrical resistances in transpedicular screw application in the thoracolumbar region. Turk Neurosurg 2016; 26(6): 937–943

    PubMed  Google Scholar 

  52. Halonen S, Annala K, Kari J, Jokinen S, Lumme A, Kronström K, Yli-Hankala A. Detection of spine structures with Bioimpedance Probe (BIP) Needle in clinical lumbar punctures. J Clin Monit Comput 2017; 31(5): 1065–1072

    Article  PubMed  Google Scholar 

  53. Li Z, Chen C, Lin Y, Li X, Tan H, Chan MT, Wu WK, Zhan S, Cao Q, Shen J. A novel probe for measuring tissue bioelectrical impedance to enhance pedicle screw placement in spinal surgery. Am J Transl Res 2018; 10(7): 2205–2212

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boesnach I, Hahn M, Moldenhauer J, Beth TH, Spetzger U. Analysis of drill sound in spine surgery. Perspective in Image-guided Surgery—the Scientific Workshop on Medical Robotics, Navigation and Visualization. RheinAhrCampus Remagen, Germany, March 11–12, 2004

  55. Liao Z, Axinte DA. On monitoring chip formation, penetration depth and cutting malfunctions in bone micro-drilling via acoustic emission. J Mater Process Technol 2016; 229: 82–93

    Article  Google Scholar 

  56. Sun Y, Jin H, Hu Y, Zhang P, Zhang J. State recognition of bone drilling with audio signal in Robotic Orthopedics Surgery System. IEEE International Conference on Intelligent Robots and Systems. IEEE 2014: 3503–3508

  57. Guan F, Sun Y, Qi X, Hu Y, Yu G, Zhang J. State recognition of bone drilling based on acoustic emission in pedicle screw operation. Sensors (Basel) 2018; 18(5): 1484

    Article  Google Scholar 

  58. Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S. Cortical bone drilling and thermal osteonecrosis. Clin Biomech (Bristol, Avon) 2012; 27(4): 313–325

    Article  Google Scholar 

  59. Shin HC, Yoon YS. Bone temperature estimation during orthopaedic round bur milling operations. J Biomech 2006; 39(1): 33–39

    Article  CAS  PubMed  Google Scholar 

  60. Wen L, Zhao ZH, Song JB, Yu DD, Chen M, Shen SGF. Experimental study on thermal and force characteristics in the dry slotting of cortical bone. Adv Mat Res 2016; 1136: 233–238

    Google Scholar 

  61. Kais I, Al-Abdullah AL, Abdi H, Lim CP. Force and temperature modelling of bone milling using artificial neural networks. Measurement 2018; 116: 25–37

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (No. L182068). We would like to thank Editage for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhao.

Additional information

Compliance with ethics guidelines

Hao Qu and Yu Zhao declared no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, H., Zhao, Y. Advances in tissue state recognition in spinal surgery: a review. Front. Med. 15, 575–584 (2021). https://doi.org/10.1007/s11684-020-0816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-020-0816-3

Keywords