Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Satellite remote sensing applications for surface soil moisture monitoring: A review

  • Review Article
  • Published:
Frontiers of Earth Science in China Aims and scope Submit manuscript

Abstract

Surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. Recent technological advances in satellite remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques, each with its own strengths and weaknesses. This paper presents a comprehensive review of the progress in remote sensing of soil moisture, with focus on technique approaches for soil moisture estimation from optical, thermal, passive microwave, and active microwave measurements. The physical principles and the status of current retrieval methods are summarized. Limitations existing in current soil moisture estimation algorithms and key issues that have to be addressed in the near future are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angstrom A (1925). The albedo of various surfaces of ground. Geografiske Annales, 7: 323

    Article  Google Scholar 

  • Asner G P (1998). Biophysical and biochemical sources of variability. Remote Sens Environ, 76:173–180

    Google Scholar 

  • Beckmann P, Spizzichino A (1963). The Scattering of Electromagnetic Waves from Rough Surfaces. New York: Pergamon Press

    Google Scholar 

  • Ben-Dor E, Irons J R, Epema G F (1999). Soil reflectance. In: Rencz A N, ed. Remote Sensing for the Earth Sciences: Manual of Remote Sensing. New York: Wiley & Sons, 111–188

    Google Scholar 

  • Betts A K, Ball J H, Baljaars A C M, Miller M J, Viterbo P (1994). Coupling Between Land-Surface, Boundary-Layer Parameterizations and Rainfall on Local and Regional Scales: Lessons from the Wet Summer of 1993. Fifth Conf. on Global Change Studies: American Meteor Soc. Nashville, 174–181

  • Bowers S A, Hanks R J (1965). Reflection of radiant energy from soils. Soil Science, 100 (3):130–138

    Google Scholar 

  • Bowers S A, Smith S J (1972). Spectrophotometric determination of soil water content. Soil Science Society of America Proceedings, 36:978–980

    Google Scholar 

  • Carlson T, Gillies R, Perry E (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9:161–173

    Google Scholar 

  • Chauhan N S (2003). Spaceborn soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach. INT J Remote Sensing, 24(22):4599–4622

    Article  Google Scholar 

  • Chen K, Yen S, Huang W (1995). A simple model for retrieving bare soil moisture from radar-scattering coefficients. Remote Sensing of the Environment, 54:121–126

    Article  Google Scholar 

  • Chen K S, Wu T D, Tsang L, Li Q, Shi J, Fung A K (2003). The emission of rough surfaces calculated by the integral equation method with a comparison to a three-dimensional moment method simulations. IEEE Trans Geosci Remote Sens, 41:90–101

    Article  Google Scholar 

  • Choudhury B J, Golus R E (1988). Estimating soil wetness using satellite data. International Journal of Remote Sensing, 9:1251–1257

    Article  Google Scholar 

  • Choudhury B J, Schmugge T J, Chang A, Newton R W (1979). Effect of surface roughness on the microwave emission from soil. J Geophys Res, 84:5699–5706

    Article  Google Scholar 

  • Choudhury B J, Tucker C J, Golus R E, Newcomb W W (1987). Monitoring vegetation using Nimbus-7 scanning multichannel microwave radiometer’s data. International Journal of Remote Sensing, 8(3):533–538

    Article  Google Scholar 

  • Claps P, Laguardia G (2004). Assessing spatial variability of soil water content through Thermal Inertia and NDVI. In: Owe M, D’Urso G, Moreno J F, Calera A, eds. Remote Sensing for Agriculture, Ecosystems, and Hydrology V. Proceedings of SPIE, Bellingham, SPIE, 5232: 378–387

  • Crosson W L, Limaye A S, Laymon C A (2005). Parameter sensitivity of soil moisture retrievals from airborne C- and X-band radiometer measurements in SMEX02. Geoscience and Remote Sensing, IEEE Transactions, 43(12):2842–2853

    Article  Google Scholar 

  • Curcio J A, Petty C C (1951). The near infrared absorption spectrum of liquid water. Journal of the Optical Society of America, 41(5):302–304

    Article  Google Scholar 

  • Curran P J (1985). Principles of Remote Sensing. Longman Scientific and Technical, UK, 282

  • Czajkowski K, Goward S N, Stadler S J, Waltz A (2000). Thermal remote sensing of near surface environmental variables: application over the Oklahoma Mesonet. Professional Geographer, 52:345–357

    Article  Google Scholar 

  • Dalal, Henry (1986). Simultaneous determination of moisture, organic carbon, and total nitrogen by infrared reflectance spectrometry. Soil Science Society of America Journal, 50:120–123

    Google Scholar 

  • Dasgupta S (2007). Remote sensing techniques for vegetation moisture and fire risk estimation. Ph.D. dissertation, George Mason University, Virginia, United States

    Google Scholar 

  • de Troch F P, Troch PA, Su Z, Lin D S (1996). Chapter 9: Application of Remote Sensing for Hydrological Modelling. In: Abbott M B, Refsgaard J C, eds. Distributed Hydrological Modelling. Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  • Dobson M C, Ulaby F T, Hallikainen M T, El-Rayes M A (1985). Microwave Dielectric Behaviour of Wet Soil- Part II: Dielectric Mixing Models. IEEE Trans Geosci Rem Sens, GE-23(1):35–46

    Article  Google Scholar 

  • Dubois P, van Zyl J (1994). An Empirical Soil moisture Estimation Algorithm Using Imaging Radar. Proceedings of IGARSS’94, IEEE, 1573–1575

  • Dubois P, van Zyl J J, Engman T (1995). Measuring soil moisture with imaging radars. IEEE Trans Geosci Remote Sensing, GE-33:915–926

    Article  Google Scholar 

  • Dupigny-Giroux L, Lewis J E (1999). A moisture index for surface characterization over a semiarid area. Photogrammetric Engineering and Remote Sensing, 65:937–946

    Google Scholar 

  • D’Ursoa G, Minacapillib M (2006). A semi-empirical approach for surface soil water content estimation from radar data without a-priori information on surface roughness. Journal of Hydrology, 321:297–310

    Article  Google Scholar 

  • Eagleman J R, Lin W C (1976). Remote sensing of soil moisture by a 21 cm passive radiometer. Journal of Geophysical Research, 81:3660–3666

    Article  Google Scholar 

  • Engman E T (1990). Progress in microwave remote sensing of soil moisture. Canadian Journal of Remote Sensing, 16(3):6–14

    Google Scholar 

  • Engman E T (1991). Application of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sensing of Environment, 35:213–226

    Article  Google Scholar 

  • Engman E T (1992). Soil Moisture Needs in Earth Sciences. In: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), 477–479

  • Engman E T, Chauhan N (1995). Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment, 51, 189–198

    Article  Google Scholar 

  • Entekhabi D, Nakamura H, Njoku E G (1993). Retrieval of soil moisture by combined remote sensing and modeling. In: Choudhury B J, Kerr Y H, Njoku E G, Pampaloni P, eds. ESA/NASA International Workshop on Passive Microwave Remote Sensing Research Related to Land-Atmosphere Interactions, St. Lary, France, 485–498

  • Fast J D, McCorcle M D (1991). The effect of heterogenous soil moisture on a summer baroclinic circulation in the central United States. Mon Wea Rev, 119:2140–2167

    Article  Google Scholar 

  • Friedl M A, Davis F W (1994). Sources of variation in radiometric surface temperature over a tall-grass prairie. Remote Sensing of Environment, 48:1–17

    Article  Google Scholar 

  • Fung A K (1994). Microwave Scattering and Emission Models and Their Applications. Artech House, Norwood, MA

  • Fung A K, Li Z, Chen K S (1992). Backscattering from a randomly rough dielectric surface. IEEE Trans Geosci Remote Sensing, 30(2):356–369

    Article  Google Scholar 

  • Gillies R R, Carlson T N (1995). Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into mesoscale prediction models. J Appl Meteorol, 34:745–756

    Article  Google Scholar 

  • Gillies R, Carlson T, Kustas W, Humes K (1997). A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int J Remote Sens, 18:3145–3166

    Article  Google Scholar 

  • Ishida T, Ando H, Fukuhara M (1991). Estimation of complex refractive index of soil particles and its dependence on soil chemical properties. Remote Sens. Environ, 38:173–182

    Article  Google Scholar 

  • Jackson R D, Idso S B, Reginato R J (1976). Calculation of evaporation rates during the transition from energy-limiting to soil-limiting phases using Albedo data. Water Resour Res, 12(1):23–26

    Article  Google Scholar 

  • Jackson T J (1993). III measuring surface soil moisture using passive microwave remote sensing. Hydrol Processes, 7:139–152

    Article  Google Scholar 

  • Jackson T J, Schmugge T J (1991). Vegetation effects on the microwave emission of soils. Remote Sens Environ, 36:203–212

    Article  Google Scholar 

  • Jackson T J, Hawley M E, O’Neill P E (1987). Preplanting soil moisture using passive microwave sensors. Water Resources Bulletin, 23(1):11–19

    Google Scholar 

  • Jackson T J, Le Vine D M, Hsu A Y, Oldak A, Starks P J, Swift C T, Isham J, Haken M (1999). Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains hydrology experiment. IEEE Trans Geosci Remote Sens, 27:2136–2151

    Article  Google Scholar 

  • Jackson T J, Le Vine D M, Swift C T, Schmugge T J, Schiebe F R (1995). Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita’ 92. Remote Sensing of Environment, 53:27–37

    Article  Google Scholar 

  • Jackson T J, Schmugge T J, Wang J R (1982). Passive microwave sensing of soil moisture under vegetation canopies. Water Resources Research, 18:1137–1142

    Article  Google Scholar 

  • Kite G W, Pietroniro A (1996). Remote sensing applications in hydrological modelling. Hydrological Sciences Journal, 41(4):563–591

    Article  Google Scholar 

  • Kustas W P, Moran M S, Norman J M (2003). Evaluating the spatial distribution of evaporation. Chap. 26. In: eds. Potter T D, Colman B R. Handbook of Weather, Climate and Water: Atmospheric Chemistry, Hydrology and Societal Impacts. Hoboken, N J: John Wiley & Sons, Inc, 461–492

    Google Scholar 

  • Lambin E F, Ehrlich D (1996). The surface temperature-vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing, 17:463–487

    Article  Google Scholar 

  • Leone A P, Sommer S (2000). Multivariate analysis of laboratory spectra for the assessment of soil development and soil degradation in the southern apennines. Remote Sensing of Environment, 72:346–359

    Article  Google Scholar 

  • Liu W, Baret F, Gu X, Tong Q, Zheng L, Zhang B (2002). Relating soil surface moisture to reflectance. Remote sensing of environment, 81:238–246 (doi:10.1016/S0034-4257(01)00347-9)

    Article  Google Scholar 

  • Liu W, Baret F, Gu X, Zhang B, Tong Q, Zheng L (2003). Evaluation of methods for soil surface moisture estimation from reflectance data, international journal of remote sensing, 24(10): 2069–2083

    Article  Google Scholar 

  • Lobell D B, Asner G P (2002). Moisture effects on soil reflectance. Soil Sci Soc Am J. 66: 722–727

    Google Scholar 

  • Meesters G C, de Jeu R A, Owe M (2005). Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci and Remote Sensing Letters, 2(2):121–123

    Article  Google Scholar 

  • Mo T, Choudhury B J, Schmugge T J, Wang J R, Jackson T J (1982). A model for microwave emission from vegetation-covered fields. Journal of Geophysical Research, 87:11.229–11.237

    Article  Google Scholar 

  • Mo T, Schmugge T J (1987). A parameterization of the effect of surface roughness on microwave emission. IEEE Trans Geosci Remote Sens, GE-25:47–54

    Article  Google Scholar 

  • Moran MS, Clarke T R, Inoue Y, Vidal A (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49:246–263

    Article  Google Scholar 

  • Moran M S, Watts J M, Peters-Lidard C D, McElroy S A (2004). Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Canadian Journal of Remote Sensing, 30(5):805–826

    Google Scholar 

  • Nemani R, Pierce L, Running S N, Goward S N (1993). Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology, 32:548–557

    Article  Google Scholar 

  • Njoku E G, Entekhabi D (1996). Passive microwave remote sensing of soil moisture. J Hydrol, 184:101–129

    Article  Google Scholar 

  • Njoku E G, Jackson T J, Lakshmi V, Chan T, Nghiem S V (2003). Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens, 41:215–229

    Article  Google Scholar 

  • Njoku E G, Kong J A (1977). Theory for passive microwave remote sensing of near-surface soil moisture. J Geophys Res, 82(20):3108–3118

    Article  Google Scholar 

  • Njoku E G, Li L (1999). Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz. IEEE Trans Geosci Remote Sens, 30:79–93

    Article  Google Scholar 

  • Njoku E G, Wilson W J, Yueh S H, Dinardo S J, Li F K, Jackson T J, Lakshmi V, Bolten J (2002). Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Trans Geosci Remote Sens, 40 (12):2659–2673

    Article  Google Scholar 

  • Oh Y, Sarabandi K, Ulaby F T (1992). An empirical model and an inversion technique for radar scattering from bare soil surface. IEEE Trans Geosci Remote Sensing, 30 (2):370–381

    Article  Google Scholar 

  • Owe M, de Jeu R, Walker J (2001). A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Remote Sens, 39:1643–1654

    Article  Google Scholar 

  • Price J C (1980). The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resources Research, 16:787–795

    Article  Google Scholar 

  • Prigent C, Wigneron J P, Rossow W B, Pardo-Carrion J R (2000). Frequency and angular variations of land surface microwave emissivities: Can we estimate SSM/T and AMSU emissivities from SSM/I emissivities? IEEE Trans Geosci Remote Sens, 38: 2373–2386

    Article  Google Scholar 

  • Prihodko L, Goward S N (1997). Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment, 60:335–346

    Article  Google Scholar 

  • Pulliainen J, Karna J P, Hallikainen M (1993). Development of geophysical retrieval algorithms for the MIMR. IEEE Trans Geosci Remote Sens, 31(1):268–277

    Article  Google Scholar 

  • Rice S O (1951). Reflection of electromagnetic wave from slightly rough surfaces. Commun. Pure Appl Mathem, 4:351–378

    Article  Google Scholar 

  • Sadeghi A M, Hancock G D, Waite W P, Scott H D, Rand J A (1984). Microwave measurements of moisture distributions in the upper soil profile. Water Resour Res, 20(7):927–934

    Article  Google Scholar 

  • Saha S K (1995). Assesment of regional soil moisture conditions by coupling satellite sensor data with a soil-plant system heat and moisture balance model. Int J Rem Sens, 16(5):973–980

    Article  Google Scholar 

  • Sandholt I, Rasmussen K, Andersen J (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79:213–224

    Article  Google Scholar 

  • Schlesinger W H, Raikes J A, Cross A F (1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77:364–376

    Article  Google Scholar 

  • Schmugge T J (1978). Remote sensing of surface soil moisture. J Appl Meteor, 17:1549–1557

    Article  Google Scholar 

  • Schmugge T J (1983). Remote sensing of soil moisture: recent advances. IEEE Trans Geosci Remote Sens, GE-21:336–344

    Article  Google Scholar 

  • Schmugge T J, Jackson T J (1994). Mapping soil moisture with microwave radiometers. Meteorol Atmos Phys, 54:213–223

    Article  Google Scholar 

  • Schmugge T J, Jackson T J, McKim H L (1980). Survey of soil moisture determination. Water Resources Research, 16:961–979

    Article  Google Scholar 

  • Shi J, Chen K S, Li Q, Jackson T J, O’Neill P E, Tsang L (2002). A parameterized surface reflectivity model and estimation of bare surface soil moisture with L-band radiometer. IEEE Trans Geosci Remote Sens, 40:2674–2686

    Article  Google Scholar 

  • Shi J, Jiang L, Zhang L, Chen K, Wigneron J, Chanzy A (2005). A Parameterized Multifrequency-polarization Surface Emission Model. IEEE Trans Geosci Remote Sens, 43:2831–2841

    Article  Google Scholar 

  • Shi J C, Wang J, Hsu A, O’Neill P E, Engman E T (1995). Estimation of soil moisture and surface roughness parameters using L-band SAR measurements. Proc. IEEE Trans Geosci Remote Sens I, 507–509

  • Shoshany M, Svoray T, Curran P J, Foody G M, Perevolotsky A (2000). The relationship between ERS-2 SAR backscatter and soil moisture: generalization from a humid to semi-arid transect. International Journal of Remote Sensing, 21:2337–2343

    Article  Google Scholar 

  • Smith R C G, Choudhury B J (1991). Analysis of normalized difference and surface temperature observations over southeastern Australia. International Journal of Remote Sensing, 12:2021–2044.

    Article  Google Scholar 

  • Sommer S, Hill J, Me’gier J (1998). The potential of remote sensing for monitoring rural land use changes and their effects on soil conditions. Agriculture Ecosystems and Environment, 67:197–209

    Article  Google Scholar 

  • Stoner E R, Baumgardner M F (1980). Physiochemical, site and bidirectional reflectance factor characteristics of uniformly moist soils (111679, LARS, Purdue University, USA)

  • Su Z, Troch P A, de Troch F P, Nochtergale L, Cosyn B (1995). Preliminary Results of Soil Moisture Retrieval From ESAR (EMAC 94) and ERS-1/SAR, Part II: Soil Moisture Retrieval. In: de Troch F P, Troch P A, Su Z, Cosyn B, eds. Proceedings of the second workshop on hydrological and microwave scattering modelling for spatial and temporal soil moisture mapping from ERS-1 and JERS-1

  • SAR data and macroscale hydrologic modeling (EV5V-CT94-0446). Institute National de la Recherche Agronomique, Unité de Science du Sol et de Bioclimatologie, France, 7–19

  • Theis S W, Blanchard B J, Newton R W (1984). Utilization of vegetation indices to improve microwave soil moisture estimates over agricultural lands. IEEE Trans Geosci Remote Sens, 22:490–496

    Google Scholar 

  • Topp G C, Davis J L, Annan A P (1980). Electromagnetic Determination of SoilWater Content: Measurements in Coaxial Transmission Lines. Water Resour Res, 16(3):574–582

    Article  Google Scholar 

  • Tramutoli V, Claps P, Marella M, Pergola N, Sileo C (2000). Feasibility of hydrological application of thermal inertia from remote sensing. 2nd Plinius Conference on Mediterranean Storms, Siena, Italy, 16–18 October, 2000

  • Ulaby F T, Dubois P C, van Zyl J (1996). Radar mapping of surface soil moisture. J Hydrol, 184:57–84

    Article  Google Scholar 

  • Ulaby F T, Moore R K, Fung A K (1986). Microwave Remote Sensing-Active and Passive. Norwood, MA: Artech House, vol III

    Google Scholar 

  • van de Griend A A, Engman E T (1985). Partial Area Hydrology and Remote Sensing. J Hydrol, 81:211–251

    Article  Google Scholar 

  • van de Griend A A, Wigneron J P (2004). The factor b as a function of frequency and canopy type at H-Polarization. IEEE Trans Geosci Remote Sens, 42(4):786–794

    Article  Google Scholar 

  • Verstraeten W W, Veroustraete F, van der Sande C J, Grootaers I, Feyen J (2006). Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sensing of Environment, 101:299–314

    Article  Google Scholar 

  • Walker J (1999). Estimating Soil Moisture Profile Dynamics from Near-Surface Soil Moisture Measurements and Standard Meteorological Data. Ph.D. dissertation, The University of Newcastle, Australia

    Google Scholar 

  • Walker J, Houser P, Willgoose G (2004). Active microwave remote sensing for soil moisture measurement: a field evaluation using ERS-2. Hydrol Process, 18:1975–1997

    Article  Google Scholar 

  • Wang J R, Choudhury B J (1981). Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency. J Geophys Res, 86:5277–5282

    Article  Google Scholar 

  • Wang J R, Choudhury B J (1995). Passive microwave radiation from soil: Examples of emission models and observations. In: Choudhury B, Kerr Y, Njoku E, Pampaloni P, eds. Passive microwave remote sensing of land-atmosphere interactions, VSP, Utrecht, The Netherlands

  • Wang J R, O’Neill P E, Jackson T J, Engman E T (1983). Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness. IEEE Trans Geosci Remote Sens, GE-21(1): 44–51

    Article  Google Scholar 

  • Wang L, Qu J J (2007). NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34: L20405. doi:10.1029/2007GL031021

    Article  Google Scholar 

  • Wang L, Qu J J, Hao X (2008). Forest fire detection using the normalized multi-band drought index (NMDI) with satellite measurements. Agricultural and Forest Meteorology, 148(11):1767–1776

    Article  Google Scholar 

  • Wang L, Qu J J, Zhang S, Hao X, Dasgupta S (2007). Soil moisture estimation using EOS MODIS and ground measurements in the Eastern China. International Journal of Remote Sensing, 28:1413–1418

    Article  Google Scholar 

  • Wang X, Zhang Z (2005). A Review: Theories, Methods and Development of Soil Moisture Monitoring by Remote Sensing. Proceedings of IGARSS’ 05, 4505–4507

  • Wegmüller U, Mätzler C (1999). Rough bare soil reflectivity model. IEEE Trans Geosci Remote Sens, 37:1391–1395

    Article  Google Scholar 

  • Wigneron J P, Calvet J C, Pellarin T, van de Griend A, Ferrazzoli P (2003). Retrieving near-surface soil moisture from microwave radiometric observations: Current status and future plans. Rem Sens Envir, 85:489–506

    Article  Google Scholar 

  • Wigneron J P, Calvet J C, de Rosnay P, Kerr Y, Waldteufel P, Saleh K, Escorihuela M J, Kruszewski A (2004). Soil moisture retrievals from biangular L-band passive microwave observations. Geoscience and Remote Sensing Letters, IEEE, 1:277–281

    Article  Google Scholar 

  • Wigneron J P, Laguerre L, Kerr Y H (2001). A simple parameterization of the L-band microwave emission from rough agricultural soil. IEEE Trans Geosci Remote Sens, 39:1697–1707

    Article  Google Scholar 

  • Wood E F, Lettenmaier D P, Zartarian V G (1992). A Land-Surface Hydrology Parameterization With Subgrid Variability for General Circulation Models. J Geophys Res, 97(D3):2717–2728

    Google Scholar 

  • Wuthrich M (1994). ERS-1 SAR compared to thermal infrared to estimate surface soil moisture. Proceedings of the 21st Conference on Agricultural and Forest Meteorology, American Meteorological Society, San Diego, 197–200

  • Xue H, Ni S (2006). Progress in the study on monitoring of soil moisture with thermal infrared remote sensing. Agricultural Research in the Arid Areas, 24:168–172

    Google Scholar 

  • Zhan X, Miller S, Chauhan N, Di L, Ardanuy P, Running S (2002). Soil Moisture Visible/Infrared Imager/Radiometer Suite Algorithm Theoretical Basis Document, Version 5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingli Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 3, 237–247 (2009). https://doi.org/10.1007/s11707-009-0023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-009-0023-7

Keywords