Abstract
The CRONE toolbox, developed since the nineties by the CRONE team, is a Matlab toolbox dedicated to fractional calculus and its applications in signal processing and automatic control. It is currently evolving toward an object-oriented version, which allows many enhancements. Three main classes, dedicated to fractional system representations namely fractional transfer functions (frac_tf), fractional zeros poles and gain (frac_zpk), and fractional state-space (frac_ss), are developed. All three user classes are children of a parent class (frac_lti) that contains some common attributes of fractional systems. Among the enhancements of the object programming of the CRONE toolbox is the overloading of basic operators (+, −, ×, /, .×, …) and standard Matlab scripts (lsim, bode, nichols, …) for the new classes. As a consequence, an end-user familiar with standard Matlab operators and scripts can use straightforwardly the CRONE toolbox. The main objective of this paper is to present class diagrams and principle features of the object-oriented CRONE toolbox, which can be downloaded at http://cronetoolbox.ims-bordeaux.fr.
Similar content being viewed by others
References
Aoun M., Malti R., Levron F., Oustaloup A.: Numerical simulations of fractional systems: an overview of existing methods and improvements. Int. J. Nonlinear Dyn. Chaos Eng. Syst. Special Issue Fract. Deriv. Appl. 38(1–4), 117–131 (2004). doi:10.1007/s11071-004-3750-z
Grünwald A.: Ueber begrenzte derivationen und deren anwendung. Zeitschrift für Math. Phys. 12, 441–480 (1867)
Khemane F., Malti R., Raïssi T., Moreau X.: Robust estimation of fractional models in the frequency domain using set membership methods. Signal Process. 92, 1591–1601 (2012). doi:10.1016/j.sigpro.2011.12.008
Lanusse, P., Malti, R., Melchior, P.: CRONE control-system design toolbox for the control engineering community. In: ASME IDETC/CIE Conferences, pp. DETC 2011–47286. Washington, USA (2011)
Malti R., Aoun M., Levron F., Oustaloup A.: Analytical computation of the \({\fancyscript{H}_2}\) -norm of fractional commensurate transfer functions. Automatica 47(11), 2425–2432 (2011). doi:10.1016/j.automatica.2011.08.029
Malti R., Moreau X., Khemane F., Oustaloup A.: Stability and resonance conditions of elementary fractional transfer functions. Automatica 47(11), 2462–2467 (2011). doi:10.1016/j.automatica.2011.08.021
Malti R., Raïssi T., Thomassin M., Khemane F.: Set membership parameter estimation of fractional models based on bounded frequency domain data. Commun. Nonlinear Sci. Numer. Simul. 15(4), 927–938 (2010). doi:10.1016/j.cnsns.2009.05.005
Malti R., Victor S., Oustaloup A.: Advances in system identification using fractional models. J. Comput. Nonlinear Dyn. 3(2), 021401,1–021401,7 (2008). doi:10.1115/1.2833910
Monje C., Vinagre B., Feliu V., Chen Y.: Tuning and auto- tuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008). doi:10.1016/j.conengprac.2007.08.006
Oldham K., Spanier J.: The Fractional Calculus—Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New-York (1974)
Ortigueira, M., Machado, T. (eds): Signal Processing—Special Issue: Fractional Calculus Applications in Signals and Systems, vol. 86. Elsevier, Amsterdam (2006)
Oustaloup A.: La dérivation Non-Entière: Théorie, Synthèse et Applications. Hermès, Paris (1995)
Oustaloup, A., Cois, O., Lanusse, P., Melchior, P., Moreau, X., Sabatier, J.: The CRONE approach: theoretical developments and major applications. In: 2nd IFAC Workshop on Fractional Differentiation and its Applications (FDA). Porto (2006)
Oustaloup A., Levron F., Mathieu B., Nanot F.: Frequency-band complex non integer differentiator: characterization and synthesis. In: IEEE Trans Circuits Syst. I Fundam Theory Appl 47(1), 25–39 (2000). doi:10.1109/81.817385
Oustaloup, A., Melchior, P., Lanusse, P., Cois, O., Dancla, F.: The CRONE toolbox for Matlab. In: 11th IEEE International Symposium on Computer-Aided Control System Design, CACSD. Anchorage (2000)
Oustaloup A., Orsoni B., Melchior P., Linares H.: Path planning by fractional differentiation. Robotica 21(1), 59–69 (2003). doi:10.1017/S0263574702004319
Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Samko S., Kilbas A., Marichev O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, New York (1993)
Sommacal, L., Melchior, P., Malti, R., Oustaloup, A.: synthesis of Havriliak-Negami functions for time-domain system identification. In: 17th World IFAC Congress, pp. 14,283–14,288. Seoul (2008)
Trigeassou, J.C., Poinot, T., Lin, J., Oustaloup, A., Levron, F.: Modeling and identification of a non integer order system. In: ECC. Karlsruhe (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
The CRONE toolbox can be downloaded at http://cronetoolbox.ims-bordeaux.fr. The website is developed and maintained by Michel Alexeline, IMS webmaster, gratefully acknowledged.
Rights and permissions
About this article
Cite this article
Malti, R., Melchior, P., Lanusse, P. et al. Object-oriented CRONE toolbox for fractional differential signal processing. SIViP 6, 393–400 (2012). https://doi.org/10.1007/s11760-012-0323-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-012-0323-3