Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Object-oriented CRONE toolbox for fractional differential signal processing

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The CRONE toolbox, developed since the nineties by the CRONE team, is a Matlab toolbox dedicated to fractional calculus and its applications in signal processing and automatic control. It is currently evolving toward an object-oriented version, which allows many enhancements. Three main classes, dedicated to fractional system representations namely fractional transfer functions (frac_tf), fractional zeros poles and gain (frac_zpk), and fractional state-space (frac_ss), are developed. All three user classes are children of a parent class (frac_lti) that contains some common attributes of fractional systems. Among the enhancements of the object programming of the CRONE toolbox is the overloading of basic operators (+, −, ×, /, .×, …) and standard Matlab scripts (lsim, bode, nichols, …) for the new classes. As a consequence, an end-user familiar with standard Matlab operators and scripts can use straightforwardly the CRONE toolbox. The main objective of this paper is to present class diagrams and principle features of the object-oriented CRONE toolbox, which can be downloaded at http://cronetoolbox.ims-bordeaux.fr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoun M., Malti R., Levron F., Oustaloup A.: Numerical simulations of fractional systems: an overview of existing methods and improvements. Int. J. Nonlinear Dyn. Chaos Eng. Syst. Special Issue Fract. Deriv. Appl. 38(1–4), 117–131 (2004). doi:10.1007/s11071-004-3750-z

    MATH  Google Scholar 

  2. Grünwald A.: Ueber begrenzte derivationen und deren anwendung. Zeitschrift für Math. Phys. 12, 441–480 (1867)

    Google Scholar 

  3. Khemane F., Malti R., Raïssi T., Moreau X.: Robust estimation of fractional models in the frequency domain using set membership methods. Signal Process. 92, 1591–1601 (2012). doi:10.1016/j.sigpro.2011.12.008

    Article  Google Scholar 

  4. Lanusse, P., Malti, R., Melchior, P.: CRONE control-system design toolbox for the control engineering community. In: ASME IDETC/CIE Conferences, pp. DETC 2011–47286. Washington, USA (2011)

  5. Malti R., Aoun M., Levron F., Oustaloup A.: Analytical computation of the \({\fancyscript{H}_2}\) -norm of fractional commensurate transfer functions. Automatica 47(11), 2425–2432 (2011). doi:10.1016/j.automatica.2011.08.029

    Article  MathSciNet  MATH  Google Scholar 

  6. Malti R., Moreau X., Khemane F., Oustaloup A.: Stability and resonance conditions of elementary fractional transfer functions. Automatica 47(11), 2462–2467 (2011). doi:10.1016/j.automatica.2011.08.021

    Article  MathSciNet  MATH  Google Scholar 

  7. Malti R., Raïssi T., Thomassin M., Khemane F.: Set membership parameter estimation of fractional models based on bounded frequency domain data. Commun. Nonlinear Sci. Numer. Simul. 15(4), 927–938 (2010). doi:10.1016/j.cnsns.2009.05.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Malti R., Victor S., Oustaloup A.: Advances in system identification using fractional models. J. Comput. Nonlinear Dyn. 3(2), 021401,1–021401,7 (2008). doi:10.1115/1.2833910

    Article  Google Scholar 

  9. Monje C., Vinagre B., Feliu V., Chen Y.: Tuning and auto- tuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008). doi:10.1016/j.conengprac.2007.08.006

    Article  Google Scholar 

  10. Oldham K., Spanier J.: The Fractional Calculus—Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New-York (1974)

    MATH  Google Scholar 

  11. Ortigueira, M., Machado, T. (eds): Signal Processing—Special Issue: Fractional Calculus Applications in Signals and Systems, vol. 86. Elsevier, Amsterdam (2006)

    Google Scholar 

  12. Oustaloup A.: La dérivation Non-Entière: Théorie, Synthèse et Applications. Hermès, Paris (1995)

    MATH  Google Scholar 

  13. Oustaloup, A., Cois, O., Lanusse, P., Melchior, P., Moreau, X., Sabatier, J.: The CRONE approach: theoretical developments and major applications. In: 2nd IFAC Workshop on Fractional Differentiation and its Applications (FDA). Porto (2006)

  14. Oustaloup A., Levron F., Mathieu B., Nanot F.: Frequency-band complex non integer differentiator: characterization and synthesis. In: IEEE Trans Circuits Syst. I Fundam Theory Appl 47(1), 25–39 (2000). doi:10.1109/81.817385

    Article  Google Scholar 

  15. Oustaloup, A., Melchior, P., Lanusse, P., Cois, O., Dancla, F.: The CRONE toolbox for Matlab. In: 11th IEEE International Symposium on Computer-Aided Control System Design, CACSD. Anchorage (2000)

  16. Oustaloup A., Orsoni B., Melchior P., Linares H.: Path planning by fractional differentiation. Robotica 21(1), 59–69 (2003). doi:10.1017/S0263574702004319

    Article  Google Scholar 

  17. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  18. Samko S., Kilbas A., Marichev O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, New York (1993)

    MATH  Google Scholar 

  19. Sommacal, L., Melchior, P., Malti, R., Oustaloup, A.: synthesis of Havriliak-Negami functions for time-domain system identification. In: 17th World IFAC Congress, pp. 14,283–14,288. Seoul (2008)

  20. Trigeassou, J.C., Poinot, T., Lin, J., Oustaloup, A., Levron, F.: Modeling and identification of a non integer order system. In: ECC. Karlsruhe (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Malti.

Additional information

The CRONE toolbox can be downloaded at http://cronetoolbox.ims-bordeaux.fr. The website is developed and maintained by Michel Alexeline, IMS webmaster, gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malti, R., Melchior, P., Lanusse, P. et al. Object-oriented CRONE toolbox for fractional differential signal processing. SIViP 6, 393–400 (2012). https://doi.org/10.1007/s11760-012-0323-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0323-3

Keywords