Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Entropy-based image registration method using the curvelet transform

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Registration is a prerequisite for fusion of geometrically distorted images. Traditionally, intensity-based image registration methods are preferred to feature-based ones due to higher accuracy of the former than that of the latter. To reduce computational load, image registration is often carried out using the approximate-level coefficients of a wavelet-like transform. Directional selectivity of the transform and the objective function used for the coefficients play vital roles in the alignment process of images. This paper introduces an image registration algorithm that uses the approximate-level coefficients of the curvelet transform, directional selectivity of which is better than many wavelet-like transforms. A conditional entropy-based objective function is developed for registration using a suitable probabilistic model of the curvelet coefficients of images. Suitability of the probability distribution of the coefficients is validated using a standard method to assess goodness of fit. To align the distorted images, the affine transformation that possesses parameters related to the translation, rotation, scaling, and shearing is used. Extensive experimentations are carried out to test the performance of the proposed registration method considering that the images are synthetically or naturally distorted. Experimental results show that performance of the proposed registration method is superior to existing methods in terms of commonly used performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arvalo, V., Gonzlez, J.: An experimental evaluation of non-rigid registration techniques on Quickbird satellite imagery. Int. J. Remote Sens. 29(2), 513–527 (2008)

    Article  Google Scholar 

  2. Suri, S., Reinartz, P.: Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas. IEEE Trans. Geosci. Remote Sens. 48(2), 939–949 (2010)

    Article  Google Scholar 

  3. Zhang, C., Fraser, C.P.: Automated registration of high-resolution satellite images. Photogramm. Rec. 22(117), 75–87 (2007)

    Article  Google Scholar 

  4. Wang, F., Vemuri, B.C.: Non-rigid multi-modal image registration using cross-cumulative residual entropy. Int. J. Comput. Vis. 74(2), 201–215 (2007)

    Article  Google Scholar 

  5. Ramprasad, P., Nagaraj, H.C., Parasuram, M.K., Shubha, M.: Multi resolution based image registration technique for matching dental X-rays. J. Mech. Med. Biol. 9(4), 621–632 (2009)

    Article  Google Scholar 

  6. Schmitt, O., Modersitzki, J., Heldmann, S., Wirtz, S.: Image registration of sectioned brains. Int. J. Comput. Vis. 73(1), 5–39 (2006)

    Google Scholar 

  7. Wachinger, C., Navab, N.: Structural image representation for image registration. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, San Fransisco, pp. 23–30 (2010)

  8. Zhaoying, L., Fugen, Z., Xiangzhi, B., Hui, W., Dongjie, T.: Multi-modal image registration by mutual information based on optimal region selection. In: Proceedings of the IEEE International Conference on Information Networking and Automation, vol. 2, pp. 249–253. Kunming (2010)

  9. Luo, B., Gan, J.-Y.: Inhomogenous illuminated images registration based on wavelet decomposition. In: Proceedings of the International Conference on Wavelet Analysis and Pattern Recognition, pp. 365–368. Baoding (2009)

  10. Huang, J.-X., Li, D., Ye, F., Dong, Z.-J.: Flexible printed circuit defective detection based on image registration. In: Proceedings of the 3rd International Congress on Image and Signal Processing, pp. 2570–2574. Yantai (2010)

  11. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)

    Article  Google Scholar 

  12. Suh, J.W., Wyatt, C.L.: Registration under topological change for CT colonoscopy. IEEE Trans. Biomed. Eng. 58(5), 1403–1411 (2011)

    Article  Google Scholar 

  13. Kim, J., Fessler, J.A.: Intensity-based image registration using robust correlation coefficients. IEEE Trans. Med. Imaging 23(11), 1430–1444 (2004)

    Article  Google Scholar 

  14. Ghantous, M., Ghosh, S., Bayoumi, M.: A multi-modal automatic image registration technique based on complex wavelets. In: Proceedings of the 16th IEEE International Conference on Image Processing, Cairo, pp. 173–176 (2009)

  15. Corsini, M., Dellapiane, M., Ponchio, F., Scopigno, R.: Image-to-geometry registration: a mutual information method exploiting illumination-related geometric properties. Comput. Graph. Forum 28(7), 1755–1764 (2009)

    Article  Google Scholar 

  16. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  17. Qin, B., Gu, Z., Sun, X., Lv, Y.: Registration of images with outliers using joint saliency map. IEEE Signal Process. Lett. 17(1), 91–94 (2010)

    Article  Google Scholar 

  18. Malviya, A., Bhirud, S.G.: Wavelet based image registration using mutual information. In: Proceedings of the International Conference on Emerging Trends in Electronic and Photonic Devices and Systems, pp. 241–244. Varanasai (2009)

  19. Shi, H., Luo, S.: Image registration using the shift-insensitive discrete wavelet transformation. In: Proceedings of the International Conference on Medical Image Analysis and Clinical Applications, pp. 46–49. Guangdong (2010)

  20. Ton, J., Jain, A.K.: Registering landsat images by point matching. IEEE Trans. Geosci. Remote Sens. 27(5), 642–651 (1989)

    Article  Google Scholar 

  21. Heo, J., Kim, J.H., Eo, Y.D., Sohn, H.-G.: Automated TM/ETM+ image co-registration using pre-qualified area matching and studentized outlier detection. Imaging Sci. J. 57(2), 69–78 (2009)

    Article  Google Scholar 

  22. Habib, A.F., Al-Ruzouq, R.I.: Semi-automatic registration and change detection using multi-source imagery with varying and radiometric properties. Photogramm. Eng. Remote Sens. 71(3), 325–332 (2005)

    Article  Google Scholar 

  23. Kwak, T.-S., Kim, Y.-I., Yu, K.-Y., Lee, B.-K.: Registration of aerial imagery and aerial LiDar data using centroids of plane roof surfaces as control information. KSCE J. Civ. Eng. 10(5), 365–370 (2006)

    Article  Google Scholar 

  24. Ryan, N., Heneghan, C., de Chazal, P.: Registration of digital retinal images using landmark correspondence by expectation maximization. Image Vis. Comput. 22, 883–898 (2004)

    Article  Google Scholar 

  25. Lu, G., Yan, J., Kou, Y., Zhang, J.: Image registration based on criteria of feature point pair mutual information. IET Image Process. 5(6), 560–566 (2011)

    Article  MathSciNet  Google Scholar 

  26. Gonzalez, R. C., Woods, R. E.: Digital Image Processing. 2nd edn. Pearsons, Singapore (2002)

  27. Szeliski, R.: Computer Vision Algorithms Applications. Springer, New York (2011)

    MATH  Google Scholar 

  28. Yang, Z., Shen, G., Wang, W., Qian, Z., Ke, Y.: Spatial-spectral cross correlation for reliable multispectral image registration. In: Proceedings IEEE Applied Imagery Pattern Recognition Workshop, pp. 1–8. Washington, DC (2009)

  29. Kaplan, L.M., Nasrabadi, N.M.: Block Wiener-based image registration for moving target indication. Image Vis. Comput. 27, 694–703 (2009)

    Article  Google Scholar 

  30. Gao, Z., Gu, B., Lin, J.: Monomodal image registration using mutual information based methods. Image Vis. Comput. 26, 164–173 (2008)

    Article  Google Scholar 

  31. Du, Q., Chen, L.: An image registration method based on wavelet transform. In: Proceedings of the International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, pp. 158–160 (2010)

  32. Peng, X., Wei, B., Chen, Q.: An efficient image registration method based on mutual information model. In: Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2168–2172. Yantai, Shandong (2010)

  33. Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Article  Google Scholar 

  34. Zhu, Y.-M.: Volume image registration by cross entropy optimization. IEEE Trans. Med. Imaging 21(2), 174–180 (2002)

    Article  Google Scholar 

  35. Neemuchwalaa, H., Heroa, A., Carsona, P.: Image matching using alpha-entropy measures and entropic graphs. Signal Process. 89, 724–737 (2009)

    Article  Google Scholar 

  36. Gholipour, A., Kehtarnavaz, N., Yousefi, S., Gopinath, K., Briggs, R.: Symmetric deformable image registration via optimization of information theoretic measures. Image Vis. Comput. 28, 965–975 (2010)

    Article  Google Scholar 

  37. Balakrishnan, N., Lai, C.-D.: Continuous Bivariate Distributions. Springer, New York (2009)

  38. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  39. Peter, A.M., Rangarajan, A.: Maximum likelihood wavelet density estimation with applications and shape matching. IEEE Trans. Image Process. 17(4), 458–468 (2008)

    Article  MathSciNet  Google Scholar 

  40. Hongli, S., Bo, H.: Image registration using a new scheme of wavelet decomposition. In: Proceedings of the IEEE Conference on Instrumentation and Measurement Technology, pp. 235–239. Victoria, BC (2008)

  41. Gao, X.Q., Nguyen, T.Q., Strang, G.: A study of two-channel complex-valued filter banks and wavelets with orthogonality and symmetry properties. IEEE Trans. Signal Process. 50(4), 824–833 (2002)

    Google Scholar 

  42. Kingsbury, N.G.: Image processing with complex wavelets. Philos. Trans. Soc. Lond. Appl. Math. Phys. Sci. 357(1760), 2543–2560 (1999)

    Google Scholar 

  43. Candes, E.J.: Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal. 6(2), 197–218 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Candes, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. Soc. Lond. Appl. Math. Phys. Sci. 357(1760), 2495–2509 (1999)

    Google Scholar 

  45. Candes, E.J., Donoho, D.L.: Curvelets—a surprisingly efffective nonadaptive representation for objectives with edges. In: Cohen, A., Rabut, C., Schumaker, L. (eds.) Curves and Surface Fitting: Saint-Malo 1999. Vanderbilt University Press, Nashville (2000)

  46. Candes, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of object with piecewise \({\cal C}^2\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  47. Demanet, L., Ying, L.: Curvelets and wave atoms for mirror-extended images. In: Proceedings of the SPIE Wavelets XII, vol. 6701, p. 67010J. San Diego (2007)

  48. Chauris, H., Nguyen, T.: Seismic demigration/migratoin in the curvelet domain. Geophysics 73(2), 4203–4215 (2005)

    Google Scholar 

  49. Choi, M., Kim, R.Y., Nam, M.-R., Kim, H.O.: Fusion of multispectral and panchromatic satellite images using the curvelet transform. IEEE Geosci. Remote Sens. Lett. 2(2), 136–140 (2005)

    Article  Google Scholar 

  50. Ma, J., Plonka, G.: The curvelet transform: a review of recent applications. IEEE Signal Process. Mag. 27(2), 118–133 (2010)

    Article  Google Scholar 

  51. Liu, J., Moulin, P.: Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients. IEEE Trans. Image Process. 10(11), 1647–1658 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  52. Rahman, S.M.M., Hasan, M.K.: Wavelet-domain iterative center weighted median filter for image denoising. Signal Process. 83, 1001–1012 (2003)

    Article  MATH  Google Scholar 

  53. Roy, S., Howlader, T., Rahman, S.M.M.: Image fusion technique using multivariate statistical model for wavelet coefficients. Signal, Image and Video Processing (published online) (2011). doi:10.1007/s11760-011-0241-9

  54. Rahman, S.M.M., Ahmad, M.O., Swamy, M.N.S.: Video denoising based on inter-frame statistical modeling of wavelet coefficients. IEEE Trans. Circuits Syst. Video Technol. 17(2), 187–198 (2007)

    Article  Google Scholar 

  55. Howlader, T., Chaubey, Y.P.: Noise reduction of cDNA microarray images using complex wavelets. IEEE Trans. Image Process. 19(8), 1953–1967 (2010)

    Article  MathSciNet  Google Scholar 

  56. Rahman, S.M.M., Ahmmad, M.O., Swamy, M.N.S.: Statistics of 2-D DT-CWT coefficients for a Gaussian distributed signal. IEEE Trans. Circuits Syst. I Regul. Pap. 55(7), 2013–2025 (2008)

    Article  MathSciNet  Google Scholar 

  57. Everitt, B.S., Skrondal, A.: The Cambridge Dictionary of Statistics, 4th edn. Cambridge University Press, New York (2010)

  58. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New Jersey (2006)

  59. Ahmed, N.A., Gokhale, D.V.: Entropy expressions and their estimators for multivariate distributions. IEEE Trans. Inf. Theory 35(3), 688–692 (1989)

    Google Scholar 

  60. Lazo, A.V., Rathie, P.: On the entropy of continuous probability distributions. IEEE Trans. Inf. Theory 24(1), 120–122 (1978)

    Article  MATH  Google Scholar 

  61. Mekky, N.E., Abou-Chadi, F.E., Kishk, S.: A new dental panoramic X-ray image registration technique using hybrid and hierarchical strategies. In: Proceedings of the International Conference on Computer Engineering and Systems, pp. 361–367. Cairo (2010)

  62. Beaulieu, M., Foucher, S., Gagnon, L.: Multi-spectral image resolution refinement using stationary wavelet transform. In: Proceedings of the IEEE International Geosciences and Remote Sensing Symposium, vol. 6, pp. 4032–4034. Toulouse (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mahbubur Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, M.M., Howlader, T. & Rahman, S.M.M. Entropy-based image registration method using the curvelet transform. SIViP 8, 491–505 (2014). https://doi.org/10.1007/s11760-012-0394-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0394-1

Keywords