Abstract
This paper presents a retrospective algorithm for correcting the uneven illumination field in microscopy images. The illumination field is iteratively made uniform using an increasing sequence of bivariate polynomials. At each iteration, the least squares problem of fitting a 2-D polynomial to a sampled image is solved by using QR decomposition with column pivoting, where image samples are obtained by dynamic programming or watershed transform. This incremental scheme allows the smoothness constraint of the estimated bias field to be implicitly satisfied. The proper number of iterations is determined by an automatic stopping criterion. The experimental results show the effectiveness of the proposed approach when compared to a set of different well-established methods.
Similar content being viewed by others
References
Al-Tam, F., dos Anjos, A., Bellafiore, S., Shahbazkia, H.R.: Detection of root knot nematodes in microscopy images. In: Proceedings of the International Conference on Bioimaging, pp. 76–81 (2015)
Ali, R., Gooding, M., Szilágyi, T., Vojnovic, B., Christlieb, M., Brady, M.: Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images. Mach. Vis. Appl. 23(4), 607–621 (2012)
Bansal, R., Staib, L.H., Peterson, B.S.: Correcting nonuniformities in mri intensities using entropy minimization based on an elastic model. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2004, pp. 78–86. Springer (2004)
Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)
Chen, T., Yin, W., Zhou, X.S., Comaniciu, D., Huang, T.S.: Illumination normalization for face recognition and uneven background correction using total variation based image models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 532–539. IEEE (2005)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to algorithms, vol. 2. MIT press, Cambridge (2001)
Cruz-Roa, A., Caicedo, J.C., González, F.A.: Visual pattern mining in histology image collections using bag of features. Artifi. Intell. Med. 52(2), 91–106 (2011)
dos Anjos, A., Møller, A.L., Ersbøll, B.K., Finnie, C., Shahbazkia, H.R.: New approach for segmentation and quantification of two-dimensional gel electrophoresis images. Bioinformatics 27(3), 368–375 (2011)
Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (2002)
Hast, A., Marchetti, A.: Improved illumination correction that preserves medium sized objects. Mach. Graph. Vis. 23, 3–20 (2014)
Heath, M.: Scientific Computing: An Introductory Survey. McGraw-Hill, New York (2002)
Kubecka, L., Jan, J., Kolar, R.: Retrospective illumination correction of retinal images. Int. J. Biomed. Imaging 2010 (2010). doi:10.1155/2010/780262
Leahy, C., O’Brien, A., Dainty, C.: Illumination correction of retinal images using laplace interpolation. Appl. Opt. 51(35), 8383–8389 (2012)
Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. Image Process. IEEE Trans. 21(3), 983–995 (2012)
Li, C., Gatenby, C., Wang, L., Gore, J.C.: A robust parametric method for bias field estimation and segmentation of MR images. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 218–223. IEEE (2009)
Likar, B., Maintz, J.A., Viergever, M.A., Pernus, F., et al.: Retrospective shading correction based on entropy minimization. J. Microsc. 197(3), 285–295 (2000)
Lindblad, J., Bengtsson, E.: A comparison of methods for estimation of intensity non-uniformities in 2D and 3D microscope images of fluorescence stained cells. In: Proceedings of the 12th Scandinavian Conference on Image Analysis (SCIA), pp. 264–271 (2001)
Ma, W., Morel, J.M., Osher, S., Chien, A.: An L 1-based variational model for Retinex theory and its application to medical images. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 153–160. IEEE (2011)
Olshausen, B.A., Field, D.J.: Natural image statistics and efficient coding*. Netw. Comput. Neural Syst. 7(2), 333–339 (1996)
Rambabu, C., Chakrabarti, I.: An efficient immersion-based watershed transform method and its prototype architecture. J. Syst. Archit. 53(4), 210–226 (2007)
Samsonov, A., Whitaker, R., Kholmovski, E., Johnson, C.: Parametric method for correction of intensity inhomogeneity in MRI data. p. 154 (2002)
Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Goldberg, I.: Iicbu 2008: a proposed benchmark suite for biological image analysis. Med. Biol. Eng. Comput. 46(9), 943–947 (2008)
Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in mri data. Med. Imaging IEEE Trans. 17(1), 87–97 (1998)
Tasdizen, T., Jurrus, E., Whitaker, R.T.: Non-uniform illumination correction in transmission electron microscopy. In: MICCAI Workshop on Microscopic Image Analysis with Applications in Biology, pp. 5–6 (2008)
Tomaževič, D., Likar, B., Pernuš, F.: Comparative evaluation of retrospective shading correction methods. J. Microsc. 208(3), 212–223 (2002)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. Pattern Anal. Mach. Intell. IEEE Trans. 13(6), 583–598 (1991)
Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. Med. Imaging IEEE Trans. 26(3), 405–421 (2007)
Young, I.T.: Shading Correction: Compensation for Illumination and Sensor Inhomogeneities. Wiley, Hoboken (2001)
Zheng, Y., Gee, J.C.: Estimation of image bias field with sparsity constraints. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 255–262. IEEE (2010)
Zheng, Y., Grossman, M., Awate, S.P., Gee, J.C.: Automatic correction of intensity nonuniformity from sparseness of gradient distribution in medical images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2009, pp. 852–859. Springer, Berlin, Heidelberg (2009)
Zheng, Y., Lin, S., Kambhamettu, C., Yu, J., Kang, S.B.: Single-image vignetting correction. Pattern Anal. Mach. Intell. IEEE Trans. 31(12), 2243–2256 (2009)
Acknowledgments
The authors are grateful to Thamar University, Dhamar-Yemen, Infectiopôle Sud, Marseille-France, and the Bill & Melinda Gates foundation.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Al-Tam, F., dos Anjos, A. & Shahbazkia, H.R. Iterative illumination correction with implicit regularization. SIViP 10, 967–974 (2016). https://doi.org/10.1007/s11760-015-0847-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-015-0847-4