Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pixel-based heterogeneous traffic measurement considering shadow and illumination variation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper endeavors to develop a new background estimation model for foreground segmentation using traditional background subtraction technique. Particularly, incorporation of luminance- and pollution-controlling parameters enables the model to address illumination variation and tail backs from vehicles, respectively. To classify each foreground pixel, a new heuristic dynamic threshold-difference function is proposed for determining individual threshold. Moreover, newly presented Positive Negative Segmentation technique removes shadow considering its physical characteristics from the foreground. After shadow correction, impulse flow waves and aggregated pictorial speed are computed accordingly. Impulse flow waves are eventually rectified and cumulated into actual flow. Pictorial speed is converted into actual speed using calibration equation considering perspective error. To facilitate video-based traffic measurement, a user-friendly tool PARTS (Pixel-Based Heterogeneous Traffic Measurement) is developed which incorporates the whole system. The data collected at different roadway locations are compared with that generated by the tool. It shows 90 and 97% correlations in measuring flow and speed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haque, N., Rahman, F., Hadiuzzaman,, M., Hossain, S., Siam, M.R.K., Qiu, T.Z.: PARTS-based real-time vehicle detection for flow measurement considering shadow and illumination variation. In: Proceedings of 96th Annual Meeting of Transportation Research Board, (2016)

  2. Mandellos, N.A., Keramitsoglou, I., Kiranoudis, C.T.: A background subtraction algorithm for detecting and tracking vehicles. Expert Syst. Appl. 38(3), 1619–1631 (2011)

    Article  Google Scholar 

  3. Guo, L., Ge, P.S., Zhang, M.H., Li, L.H., Zhao, Y.B.: Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine. Expert Syst. Appl. 39(3), 4274–4286 (2012)

    Article  Google Scholar 

  4. Lee, B., Hedley, M.: Background estimation for video surveillance. Image Vis. Comput. N. Z. 1, 315–320 (2002)

    Google Scholar 

  5. McFarlane, N., Schofield, C.: Segmentation and tracking of piglets in images. Br. Mach. Vis. Appl. 1, 187–193 (1995)

    Article  Google Scholar 

  6. Zheng, J., Wang, Y., Nihan, N., Hallenbeck, M.: Extracting roadway background image: mode-based approach. Transp. Res. Rec. J Transp. Res. Board 1944, 82–88 (2006)

    Article  Google Scholar 

  7. Wren, C. R., Porikli, F.: Waviz spectral similarity for object detection. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 55–61 (2005)

  8. Kim, H., Sakamoto, R., Kitahara, I., Toriyama, T., Kogure, K.: Robust foreground extraction technique using Gaussian family model and multiple thresholds. In: Proceedings of the Asian Conference on Computer Vision, pp. 758–768 (2007)

  9. Stauffer, C., Grimson, W. E. L.: Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1999)

  10. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Proceedings of the European Conference on Computer Vision, pp. 751–767 (2000)

  11. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 38–43 (2012)

  12. Maddalena, L., Petrosino, A.: The 3dSOBS+ algorithm for moving object detection. Comput Vis. Image Underst. CVIU 2014(122), 65–73 (2014)

    Article  Google Scholar 

  13. Narayana, M., Hanson, A., Learned-Miller, E.: Background subtraction–separating the modeling and the inference. Mach. Vision Appl. 25(5), 1163–1174 (2014)

    Article  Google Scholar 

  14. Frenando, W.S.K., Hearth, H.M.S.P.B., Perera, P.H., Ekanayake, M.P.B., Godaliyadda, G.M.R.I., Wijayakulasooriya, J.V.: Object Identification, enhancement and tracking under dynamic background conditions. In: \(7^{th}\) International Conference on Information and Automation for Sustainability, Colombo, pp. 1–6 (2014)

  15. Figov, Z., Tal, Y., Koppel, M.: Detecting and removing shadows. In: Proceedings of 7th IASTED International Conference on Computer Graphics and Imaging, (2004)

  16. Finlayson, G.D., Drew, M.S., Cheng, L.: Entropy minimization for shadow removal. Int. J. Comput. Vision 85(1), 35–57 (2009)

    Article  Google Scholar 

  17. Guo, R., Dai, Q., Hoiem, D.: Single image shadow detection and removal using paired regions. In: Proceedings of the 18 IEEE CVPR, pp. 2033–2040 (2011)

  18. Germain, A., Salamati, N., Susstrunk, S.: Removing shadows from images using color and near -infrared. In: Proceedings of the IEEE ICIP, pp. 1713–1716 (2011)

  19. Zhu, J., Samuel, K. G. G., Masood, S. Z., Tappen, M. F.: Learning to recognize shadows in monochromatic natural images. In: Proceedings of the IEEE CVPR, pp. 223–230 (2010)

  20. Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: Change detection chalange. http://www.changedetection.net

  21. Braham, M., Van Droogenbroeck, M.: Deep background subtraction with scene-specific convolutional neural networks. In: International Conference on Systems, Signals and Image Processing, (2016)

Download references

Acknowledgements

This research work is supported by the Committee for Advanced Studies and Research (CASR) (Grant No. 69) of Bangladesh University of Engineering and Technology (BUET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Hadiuzzaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadiuzzaman, M., Haque, N., Rahman, F. et al. Pixel-based heterogeneous traffic measurement considering shadow and illumination variation. SIViP 11, 1245–1252 (2017). https://doi.org/10.1007/s11760-017-1081-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1081-z

Keywords