Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Synthesis of arbitrary-shaped textures constrained by the structure tensor field

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a new algorithm is presented for the nonparametric synthesis of arbitrary-shaped textures from an initial texture sample, called the exemplar, and a reference orientation map, called the reference and intended to constrain the coarse scale orientation flow of the output texture. The synthesis process consists of three stages. First, a dictionary is constructed, composed of rotated versions of the exemplar and of their structure tensor fields. Then a synthetic structure tensor field is constructed from the exemplar’s one, under the constraint of the reference. Finally, the output texture is synthesized from the previously generated structure tensor field, again under the constraint of the reference. Synthesis experiments show that the proposed method is able to faithfully reproduce the visual aspect of input samples while respecting the large-scale orientation flow of the reference. This paves the way toward the synthesis of 3-D textures of arbitrary shapes from 2-D exemplars, with applications in virtual material design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Heckbert, P.: Survey of texture mapping. Pixar, IEEE Comput. Graph. Appl. 6, 56–67 (1986)

    Article  Google Scholar 

  2. Yamauchi, H., Haber, J., Seidel, H-P.: Image restoration using multiresolution texture synthesis and image inpainting. In: Proc. Int. Conf. Comput. Graph. (2003)

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. Annual Conf. on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)

  4. Sun, W., Lu, Y., Wu, F., Li, S., Tardif, J.: High-dynamic-range texture compression for rendering systems of different capacities. IEEE Trans. Vis. Comput. Graph. 16(1), 57–69 (2010)

    Article  Google Scholar 

  5. Leyssale, J.-M., Da Costa, J.-P., Germain, C., Weisbecker, P., Vignoles, G.: An image-guided atomistic reconstruction of pyrolytic carbons. Appl. Phys. Lett. 95, 231912 (2009)

    Article  Google Scholar 

  6. Forsyth, D.A., Ponce, J.: Computer vision: a modern approach. Chap 9, pp. 189–212. Pearson Education, Upper Saddle River, NJ (2003)

  7. Popat, K., Picard, R.W.: Novel cluster-based probability model for texture synthesis, classification, and compression. In: Proc. SPIE Visual Communications and Image Processing, Boston (1993)

  8. Paget, R., Longstaff, I.: Texture synthesis via a noncausal nonparametric multiscale Markov random field. IEEE Trans. Image Process. 7(6), 925–931 (1998)

    Article  Google Scholar 

  9. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. Int. Conf. Comput. Vis. 2, 1033–1038 (1999)

    Google Scholar 

  10. Wei, L.-Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 479–488 (2000)

  11. Ashikhmin, M.: Synthesizing natural textures. In: The 2001 Symposium on Interactive 3D Graphics (SI3D), pp. 217–226. ACM Press, New York, NY, USA (2001)

  12. Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.: Synthesis of bidirectional texture functions on arbitrary surfaces. In: Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, pp. 665–672 (2002)

  13. Efros, A., Freeman, W. T.: Image quilting for texture synthesis and transfer. In: Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 341–346. New York, NY, USA, ACM Press (2001)

  14. Xu, Y. Q., Guo, B., Shum, H.: Chaos mosaic: fast and memory efficient texture synthesis. In: Tech. Rep. MSRTR-2000-32, Microsoft Research (2000)

  15. Heeger, D. J., Bergen, J. R.: Pyramid-based texture analysis/synthesis. In: Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 229–238. New York, NY, USA (1995)

  16. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–71 (2000)

    Article  MATH  Google Scholar 

  17. Van Wijk, J.J.: Spot noise texture synthesis for data visualization. In: Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 309-318. ACM Press, New York, NY, USA (1991)

  18. Galerne, B., Gousseau, Y., Morel, J.-M.: Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20(1), 257–267 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)

    MATH  Google Scholar 

  20. Bordenave, C., Gousseau, Y., Roueff, F.: The dead leaves model: a general tessellation modeling occlusion. Adv. Appl. Prob. 38(1), 31–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chellappa, R., Kashyap, R.L.: Texture synthesis using 2-D noncausal autoregressive models. IEEE Trans. Acousti. Speech Signal Process. 33(1), 194–203 (1985)

    Article  Google Scholar 

  22. Francos, J.M., Meiri, A.Z., Porat, B.: A unified texture model based on a 2-D wold-like decomposition. IEEE Trans. Signal Process. 41, 2665–2678 (1993)

    Article  MATH  Google Scholar 

  23. Chellappa, R., Kashyap, R., Manjunath, B.: Model Based Texture Segmentation and Classification. Handbook of Pattern Recognition and Computer Vision. World Scientifc Publishing, Singapore (1993)

    Google Scholar 

  24. Cross, G., Jain, A.: Markov random field texture models. In: IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-5, pp. 25–39 (1983)

  25. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  26. Turner, M.R.: Texture discrimination by Gabor functions. Biol. Cybern. 55(2–3), 71–82 (1986)

    Google Scholar 

  27. Mallat, S.: Multifrequency channel decomposition of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2091–2110 (1989)

    Article  Google Scholar 

  28. Zhang, E., Hays, J., Turk, G.: Interactive tensor field design and visualization on surfaces. IEEE Trans. Vis. Comput. Graph. 13(1), 94–107 (2007)

    Article  Google Scholar 

  29. Damkat, C.: Single image super-resolution using self-examples and texture synthesis. Signal, Image Video Process. 5(3), 343–352 (2011)

    Article  Google Scholar 

  30. Patel, N., Zaver, M.: 3D facial model reconstruction, expressions synthesis and animation using single frontal face image. Signal, Image Video Process. 7(5), 889–897 (2013)

    Article  Google Scholar 

  31. Farid, M.S., Mahmood, A., Grangetto, M.: Image de-fencing framework with hybrid inpainting algorithm. Signal, Image Video Process. 10(7), 1193–1201 (2016)

    Article  Google Scholar 

  32. Peyré, G.: Texture synthesis with grouplets. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 733–746 (2009)

    Article  Google Scholar 

  33. Akl, A., Yaacoub, C., Donias, M., Da Costa, J.-P., Germain, C.: Texture synthesis using the structure tensor. IEEE Trans. Image Process. 24(11), 4082–4095 (2015)

    Article  MathSciNet  Google Scholar 

  34. Wedler, W.: Texture transfer. http://www.cs.cmu.edu/afs/andrew/scs/cs/15-463/f07/proj_final/www/wwedler/. Accessed 29 May 2017 (2007)

  35. Akl, A., Yaacoub, C., Donias, M., Da Costa, J.-P., Germain, C.: Synthèse de texture contrainte par champ de structure arbitraire. In: Proceedings of Colloquium GRETSI (2015)

  36. Jähne, B.: Spatio-Temporal Image Processing: Theory and Scientific Applications, vol. 751. Springer, Berlin (1993)

    MATH  Google Scholar 

  37. Arseneau, S., Cooperstock, J.: An improved representation of junctions through asymmetric tensor diffusion. In: International Symposium on Visual Computing (2006)

  38. Kass, M., Witkin, A.: Analyzing oriented patterns. Comput. Vis. Graph. Image Process. 37(3), 362–385 (1987)

    Article  Google Scholar 

  39. Toujas, V., Donias, M., Berthoumieu, Y.: Structure tensor field regularization based on geometric features. In: Proc. European Signal Processing Conference, pp. 23–27 (2010)

  40. Akl, A., Yaacoub, C., Donias, M., Da Costa, J.-P., Germain, C.: Structure tensor based synthesis of directional textures for virtual material design. In: IEEE International Conference on Image Processing (ICIP), pp. 4867–4871 (2014)

Download references

Acknowledgements

The authors would like to thank the LCTS for the images. This work was supported in part by the French National Research Agency and Aerospace Valley, through the project PyroMaN, and in part by the Higher Center for Research at the Holy Spirit University of Kaslik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adib Akl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akl, A., Yaacoub, C., Donias, M. et al. Synthesis of arbitrary-shaped textures constrained by the structure tensor field. SIViP 12, 41–49 (2018). https://doi.org/10.1007/s11760-017-1128-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1128-1

Keywords