Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Automatic optic disk detection and segmentation by variational active contour estimation in retinal fundus images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Computer-aided optic disk (OD) detection and segmentation is at the heart of modern fundus image screening systems for early detection and diagnosis of glaucoma and diabetic retinopathy. Algorithms that generalize well on fundus images with diseases, as well as screening images, are of utmost importance. This paper presents a method based on OD homogenization and subsequent contour estimation to address the challenges of OD detection in cases where either the OD boundary is discontinuous or very smooth, due to the presence of disease. This is achieved by local Laplacian filtering-based inpainting of the major vascular structure to complete the OD boundary and gradient-independent active contour estimation for unconstrained OD boundary detection. Experimental evaluation of the proposed method on three benchmark datasets and quantitative comparison with the best performing state-of-the-art methods in terms of four quantitative measures demonstrate its competitive performance and reliability for OD screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yau, J.W., Rogers, S.L., Kawasaki, R., Lamoureux, E.L., Kowalski, J.W., Bek, T., Chen, S.J., Dekker, J.M., Fletcher, A., Grauslund, J., et al.: Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3), 556–564 (2012)

    Article  Google Scholar 

  2. Soomro, T.A., Khan, T.M., Khan, M.A.U., Gao, J., Paul, M., Zheng, L.: Impact of ica-based image enhancement technique on retinal blood vessels segmentation. IEEE Access 6, 3524–3538 (2018)

    Article  Google Scholar 

  3. Khowaja, S.A., Khuwaja, P., Ismaili, I.A.: A framework for retinal vessel segmentation from fundus images using hybrid feature set and hierarchical classification. Signal Image Video Process (2018). https://doi.org/10.1007/s11760-018-1366-x

  4. Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Optic disc detection using fine tuned convolutional neural networks. In: 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 69–75 (2016)

  5. Soomro, T.A., Khan, M.A.U., Gao, J., Khan, T.M., Paul, M.: Contrast normalization steps for increased sensitivity of a retinal image segmentation method. Signal Image Video Process. 11(8), 1509–1517 (2017). https://doi.org/10.1007/s11760-017-1114-7

    Article  Google Scholar 

  6. Morales, S., Naranjo, V., Angulo, J., Alcañiz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imag. 32(4), 786–796 (2013)

    Article  Google Scholar 

  7. Septiarini, A., Harjoko, A., Pulungan, R., Ekantini, R.: Optic disc and cup segmentation by automatic thresholding with morphological operation for glaucoma evaluation. Signal Image Video Process. 11(5), 945–952 (2017)

    Article  Google Scholar 

  8. Guo, X., Li, Q., Sun, C.: Automatic localization of optic disk based on texture orientation voting. Signal Image Video Process. 11(6), 1115–1122 (2017)

    Article  Google Scholar 

  9. Park, M., Jin, J.S., Luo, S.: Locating the optic disc in retinal images. In: 2006 International Conference on Computer Graphics, Imaging and Visualisation, pp. 141–145 (2006)

  10. Aquino, A., Gegúndez-Arias, M.E., Marín, D.: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imag. 29(11), 1860–1869 (2010)

    Article  Google Scholar 

  11. Lalonde, M., Beaulieu, M., Gagnon, L.: Fast and robust optic disc detection using pyramidal decomposition and hausdorff-based template matching. IEEE Trans. Med. Imag. 20(11), 1193–1200 (2001)

    Article  Google Scholar 

  12. Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Comparison of colour spaces for optic disc localisation in retinal images. In: 16th International Conference on Pattern Recognition, 2002. Proceedings, vol. 1, pp. 743–746 (2002)

  13. Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51(2), 246–254 (2004)

    Article  Google Scholar 

  14. Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Fletcher, E., Kennedy, L.: Optic nerve head segmentation. IEEE Trans. Med. Imag. 23(2), 256–264 (2004)

    Article  Google Scholar 

  15. Walter, T., Klein, J.C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imag. 21(10), 1236–1243 (2002)

    Article  Google Scholar 

  16. Welfer, D., Scharcanski, J., Kitamura, C.M., Dal Pizzol, M.M., Ludwig, L.W., Marinho, D.R.: Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput. Biol. Med. 40(2), 124–137 (2010)

    Article  Google Scholar 

  17. Abramoff, M.D., Niemeijer, M.: The automatic detection of the optic disc location in retinal images using optic disc location regression. In: Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, pp. 4432–4435 (2006)

  18. Fan, Z., Rong, Y., Cai, X., Lu, J., Li, W., Lin, H., Chen, X.: Optic disk detection in fundus image based on structured learning. IEEE J. Biomed. Health Inform. 22(1), 224–234 (2018)

    Article  Google Scholar 

  19. Johnson, R., Fu, A., McDonald, H., Jumper, J., Ai, E., Cunningham, E., Lujan, B.: Fluorescein Angiography: Basic Principles and Interpretation, vol. 1. Elsevier Inc., Amsterdam (2012). https://doi.org/10.1016/B978-1-4557-0737-9.00001-1

    Google Scholar 

  20. Yu, H., Agurto, C., Barriga, S., Nemeth, S.C., Soliz, P., Zamora, G.: Automated image quality evaluation of retinal fundus photographs in diabetic retinopathy screening. In: 2012 IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 125–128 (2012)

  21. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1674–1682 (2016)

  22. Itti, L., Koch, C.: Comparison of feature combination strategies for saliency-based visual attention systems. In: Proceedings of SPIE Human Vision and Electronic Imaging IV (HVEI’99), San Jose, CA, vol. 3644, pp. 473–82 (1999)

  23. Paris, S., Hasinoff, S.W., Kautz, J.: Local laplacian filters: edge-aware image processing with a laplacian pyramid. Commun. ACM 58(3), 81–91 (2015)

    Article  Google Scholar 

  24. Almazroa, A., Burman, R., Raahemifar, K., Lakshminarayanan, V.: Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. J. Ophthalmol. (2015). https://doi.org/10.1155/2015/180972

  25. Zhang, Z., Liu, J., Cherian, N.S., Sun, Y., Lim, J.H., Wong, W.K., Tan, N.M., Lu, S., Li, H., Wong, T.Y.: Convex hull based neuro-retinal optic cup ellipse optimization in glaucoma diagnosis. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1441–1444 (2009)

  26. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  27. Dai, B., Wu, X., Bu, W.: Optic disc segmentation based on variational model with multiple energies. Pattern Recognit. 64, 226–235 (2017)

    Article  Google Scholar 

  28. Xu, J., Chutatape, O., Chew, P.: Automated optic disk boundary detection by modified active contour model. IEEE Trans. Biomed. Eng. 54(3), 473–482 (2007)

    Article  Google Scholar 

  29. Carmona, E.J., Rincón, M., García-Feijoó, J., de-la Casa, J.M.M.: Identification of the optic nerve head with genetic algorithms. Artif. Intell. Med. 43(3), 243–259 (2008)

    Article  Google Scholar 

  30. M., T.V.: Messidor: Digital retinal images France (2008). http://messidor.crihan.fr/download-en.php

  31. Abdullah, M., Fraz, M.M., Barman, S.A.: Localization and segmentation of optic disc in retinal images using circular hough transform and grow-cut algorithm. PeerJ 4, e2003 (2016)

    Article  Google Scholar 

  32. Zahoor, M.N., Fraz, M.M.: Fast optic disc segmentation in retina using polar transform. IEEE Access 5, 12293–12300 (2017)

    Article  Google Scholar 

  33. dos Santos Ferreira, M.V., de Carvalho Filho, A.O., de Sousa, A.D., Silva, A.C., Gattass, M.: Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma. Expert Syst. Appl. 110, 250–263 (2018)

    Article  Google Scholar 

  34. Al-Bander, B., Al-Nuaimy, W., Williams, B.M., Zheng, Y.: Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed. Signal Process. Control 40, 91–101 (2018)

    Article  Google Scholar 

  35. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imag. 37(7), 1597–1605 (2018)

    Article  Google Scholar 

Download references

Funding

There was no funding received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed S. Naqvi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqvi, S.S., Fatima, N., Khan, T.M. et al. Automatic optic disk detection and segmentation by variational active contour estimation in retinal fundus images. SIViP 13, 1191–1198 (2019). https://doi.org/10.1007/s11760-019-01463-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01463-y

Keywords